【后端面试题】【中间件】【NoSQL】MongoDB查询过程、ESR规则、覆盖索引的优化
任何中间件的面试说到底都是以高可用、高性能和高并发为主,而高性能和高并发基本是同时存在的。
性能优化一直被看作一个高级面试点,因为只有对原理了解得很透彻的人,在实践中才能找准性能优化的关键点,从而通过各种优化手段解决性能问题
MongoDB查询过程
MongoDB在分片之后会有一些机制来保证查询能够准确找到数据。在分库分表中,查询的执行过程中最重要的一步,就是计算数据可能在哪个目标表上。如果实在计算不出来,那么只能考虑使用广播。
MongoDB也需要考虑类似的问题。在MongoDB里,有一类实例叫做mongos,这些实例负责路由查询到目标表上,还有合并结果集。
在分库分表中,计算目标表是分库分表中间件或分库分表代理完成的
MongoDB的ESR规则
在MongoDB里面设计索引的时候就要考虑所谓的ESR规则。
ESR代表的是E(Equality)、S(Sort)和R(Range),也就是相等、排序和范围。在设计索引的时候,按照ESR规则来排列你的索引列。
比如说,你用A进行等值查找,用B进行排序,用C进行范围查询,那么就应该是ABC,如果你是BAC,就违反了ESR规则。
而且ESR的三个元素是可以重复的,只要保证相对顺序不变就可以。
- EESR:两个等值列
- ESSR:两个排序列
- ER:没有排序列
- ERR:两个范围列
在设计、优化索引的时候就是要让索引尽量符合ESR规则。
面试准备
- 有没有遇到过MongoDB慢查询的问题?如果有,引发慢查询的原因是什么?最终是怎么解决的?
- 有没有优化过MongoDB的索引?是怎么优化的?
- MongoDB的参数有没有调整过?调过哪些?为什么调整?
- MongoDB的平均查询时间多长?99线以及999线是多少
你可以把 MongoDB 的性能优化、MySQL 查询性能优化、Elasticsearch 性能优化三个合并在一起。也就是说你整个面试思路就是讨论它们三个的性能优化手段。
比如:
- 在讨论到MySQL索引优化的时候,提起优化MongoDB的索引
- 在讨论到分库分表分页查询的时候,提起MongoDB里的mongos
- 在讨论Elasticsearch分片的时候,也可以提起MongoDB的分片
通过这样的横向对比,树立起一个掌握了各种中间件性能优化方法论的形象,从而加深面试官对你的印象,赢得竞争优势。
优化MongoDB查询
覆盖索引
在MySQL上使用覆盖索引的最大好处就是不需要回表,从索引里就可以直接拿到你需要的数据。
在MongoDB里也可以用这样的手段,也就是说,如果有一个索引上有你要查询的全部数据,那么MongoDB就不用把整个文档加载进来。最直观的做法就是在查询中使用projection
方法指定字段,而且这些字段都是索引字段。
这算是最基本的优化手段,在真实的工作场景也很常见,因为最开始开发者为了省事,通常是直接把所有的字段查询出来,后续随着数据量增长才会遇到性能问题。
之前我做过一个很简单的优化,早期有一个业务查询,就是把整个文档都加载进来。后面发现,这个查询的调用者大部分其实不需要整个文档,只需要里面的几个字段。所以就额外提供了一个新的查询接口,只会返回部分字段。优化后,大部分查询都是调用新接口,MongoDB也不需要把整个文档加载进来,性能提升了至少30%。
也可以进一步总结一下
不仅仅是查询,就算是在更新的时候,也要尽可能做到只更新必要的字段。比如在一些业务场景下,出于快速研发的角度,可能考虑前端把整个文档传过来,后端直接更新整个文档。但是如果只传修改过的字段,可以只更新必要的字段,这样的性能也很好。
相关文章:

【后端面试题】【中间件】【NoSQL】MongoDB查询过程、ESR规则、覆盖索引的优化
任何中间件的面试说到底都是以高可用、高性能和高并发为主,而高性能和高并发基本是同时存在的。 性能优化一直被看作一个高级面试点,因为只有对原理了解得很透彻的人,在实践中才能找准性能优化的关键点,从而通过各种优化手段解决性…...
使用c++函数式编程实现Qt信号槽机制
问题背景 在下面的代码中,Input输入器 输入数据,希望A和B 接收数据。但使用的赋值,导致in.a和a只是拷贝数据,而不是同一个对象,使得数据不同步。 #include <iostream> struct A {int age 32; }; struct B {int …...
【Android】Activity子类之间的区别
从底层往顶层的继承顺序依次是: Activity,最原始的Activity androidx.core.app.ComponentActivity,仅仅优化了一个关于KeyEvent的拦截问题,一般不继承这个类 androidx.activity.ComponentActivity,支持和Android Arc…...

在 Mac 上使用 MLX 微调微软 phi3 模型
微调大语言模型是常见的需求,由于模型参数量大,即使用 Lora/Qlora 进行微调也需要 GPU 显卡,Mac M系是苹果自己的 GPU,目前主流的框架还在建立在 CUDA 的显卡架构,也就是主要的卡还是来自英伟达。如果要用 Mac 来做训练…...

【JavaEE】多线程代码案例(2)
🎏🎏🎏个人主页🎏🎏🎏 🎏🎏🎏JavaEE专栏🎏🎏🎏 🎏🎏🎏上一篇文章:多线程代码案例(1)&a…...

Halcon支持向量机
一 支持向量机 1 支持向量机介绍: 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别表现出许多特有的优势。 2 支持向量机原理: 在n维空间中找到一个分类超平面…...
【Python机器学习】模型评估与改进——在模型选择中使用评估指标
我们通常希望,在使用GridSearchCV或cross_val_score进行模型选择时能够使用AUC等指标。scikit-learn提供了一种非常简单的实现方法,那就是scoring参数,它可以同时用于GridSearchCV和cross_val_score。你只需要提供一个字符串,用于…...

【C语言】union 关键字
在C语言中,union关键字用于定义联合体。联合体是一种特殊的数据结构,它允许不同的数据类型共享同一段内存。所有联合体成员共享同一个内存位置,因此联合体的大小取决于其最大成员的大小。 定义和使用联合体 基本定义 定义一个联合体类型时…...

电脑回收站删除的文件怎么恢复?5个恢复方法详解汇总!
电脑回收站删除的文件怎么恢复?在我们日常使用电脑的过程中,难免会遇到误删文件的情况。一旦发现自己误删文件了,先不要着急,还是有很多方法可以找回的。市面上还是有很多好用的文件恢复软件可以使用,具体介绍如下。 本…...
mac 安装cnpm 淘宝镜像记录
mac 安装cnpm 淘宝镜像记录 本文介绍了在安装cnpm时遇到权限问题的解决方案,包括使用sudo,处理SSL证书过期,以及因版本不一致导致的错误处理方法,步骤包括设置npm配置、卸载和重新安装cnpm到特定版本。 安装 npm install cnpm …...
ArcGIS Pro SDK (七)编辑 11 撤销重做
ArcGIS Pro SDK (七)编辑 11 撤销&重做 文章目录 ArcGIS Pro SDK (七)编辑 11 撤销&重做1 撤消/重做最近的操作 环境:Visual Studio 2022 .NET6 ArcGIS Pro SDK 3.0 1 撤消/重做最近的操作 //撤销 if (MapV…...
Excel 中的元素定位:相对定位、绝对定位和混合定位
在Excel中,单元格引用有三种主要类型:相对定位、绝对定位和混合定位。 这些类型主要用于公式和函数中,决定在复制或拖动公式时引用如何变化。 1. 相对定位 相对定位指的是不带“$”符号的单元格引用,例如 A1。 这种引用方式在…...
Idea2024安装后点击无响应
问题 最近因工作需要,升级一下 idea 版本,之前一直使用的是2020版本,下载最新的2024版本(下载的 zip 包免安装模式,之前使用的2020版本也是免安装的,因为是免安装的,所以之前的版本也没有删除&…...
如何提高实验室分析结果的准确性呢
要提高实验室分析结果的准确性,可以从以下几个方面着手: 1、选择合适的实验方法 不同的实验方法具有不同的优缺点,实验方法的准确度直接影响测定结果的准确度。因此,在选择实验方法时,需要根据实验目的、实验原理、实…...
Perl 格式化输出:提升代码可读性的技巧
引言 Perl 是一种功能强大的脚本语言,广泛用于文本处理、系统管理、网络编程等多个领域。在 Perl 编程中,代码的格式化输出不仅有助于提升代码的可读性,还能增强程序的用户体验。本文将详细介绍如何在 Perl 中实现代码的格式化输出。 Perl …...

JavaScript基础-函数(完整版)
文章目录 函数基本使用函数提升函数参数arguments对象(了解)剩余参数(重点)展开运算符(...) 逻辑中断函数参数-默认参数函数返回值-return作用域(scope)全局作用域局部作用域变量的访问原则垃圾回收机制闭包 匿名函数函数表达式立即执行函数 箭头函数箭头…...
AI开发者的新选择:Mojo编程语言
随着人工智能技术的迅猛发展,编程语言的选择在AI项目的成功中扮演着至关重要的角色。近年来,Mojo编程语言作为一种专为AI开发者设计的新兴语言,逐渐引起了广泛关注。本文将详细介绍Mojo编程语言的特点、优势及其在AI开发中的应用。 目录 Mo…...
软考(高项)系统分析师--论软件开发模型及应用
文章目录 前言一、前期准备:二、论文部分: 前言 本文对系统分析师,软件开发模型及其应用文章进行展示,可以拷贝后直接粘贴到word 文档中。 一、前期准备: 项目主体功能项目背景常用的软件开发模型:瀑布模型ÿ…...
同一天提档又撤档!电影《野孩子》宣布取消7月10日公映安排——浔川电影报
同一天提档又撤档! 7月3日晚上10点,电影野孩子 发声明官宣撤档,“由于后期进度原因,电影《野孩子》将取消7月10日的公映安排,我们向各影管院线的同仁及所有观众朋友们致以最诚挚的歉意,谢谢大家这段时间的…...
Shell编程之免交互
一、Here Document免交互 1:概述 Here Document 是一个特殊用途的代码块,它在 Linux Shell 中使用 I/O 重定向的方式将命令列表提供给交互式程序或命令,比如 ftp、cat 或 read 命令,Here Document 是标准输入的一种替代品 语法…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
GeoServer发布PostgreSQL图层后WFS查询无主键字段
在使用 GeoServer(版本 2.22.2) 发布 PostgreSQL(PostGIS)中的表为地图服务时,常常会遇到一个小问题: WFS 查询中,主键字段(如 id)莫名其妙地消失了! 即使你在…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统
核心速览 研究背景 研究问题:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...