当前位置: 首页 > news >正文

【康复学习--LeetCode每日一题】3115. 质数的最大距离

题目:

给你一个整数数组 nums。
返回两个(不一定不同的)质数在 nums 中 下标 的 最大距离。

示例 1:
输入: nums = [4,2,9,5,3]
输出: 3
解释: nums[1]、nums[3] 和 nums[4] 是质数。因此答案是 |4 - 1| = 3。

示例 2:
输入: nums = [4,8,2,8]
输出: 0
解释: nums[2] 是质数。因为只有一个质数,所以答案是 |2 - 2| = 0。

提示:
1 <= nums.length <= 3 * 105
1 <= nums[i] <= 100
输入保证 nums 中至少有一个质数。

思路:

打表,将100以内的质数先穷举出来,然后用一个tmp记录第一个质数的下标,后面每遇到一个质数就去更新ans

代码:

class Solution {// 打表,将100以内的质数先穷举出来// 然后用一个tmp记录第一个质数的下标,后面每遇到一个质数就去更新anspublic int maximumPrimeDifference(int[] nums) {Set<Integer> primes = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11,13, 17, 19, 23, 29,31, 37, 41, 43, 47,53, 59, 61, 67, 71,73, 79, 83, 89, 97));int n = nums.length;int tmp = -1, ans = 0;for (int i = 0; i < n; ++i) {if (primes.contains(nums[i])) {if (tmp != -1) {ans = Math.max(ans, i - tmp);} else {tmp = i;}}}return ans;}
}

相关文章:

【康复学习--LeetCode每日一题】3115. 质数的最大距离

题目&#xff1a; 给你一个整数数组 nums。 返回两个&#xff08;不一定不同的&#xff09;质数在 nums 中 下标 的 最大距离。 示例 1&#xff1a; 输入&#xff1a; nums [4,2,9,5,3] 输出&#xff1a; 3 解释&#xff1a; nums[1]、nums[3] 和 nums[4] 是质数。因此答案是…...

【yolov8系列】ubuntu上yolov8的开启训练的简单记录

前言 yolov8的广泛使用&#xff0c;拉取yolov8源码工程&#xff0c;然后配置环境后直接运行&#xff0c;初步验证自己数据的检测效果&#xff0c;在数据集准备OK的情况下 需要信手拈来&#xff0c;以保证开发过程的高效进行。 本篇博客更注意为了方便自己使用时参考。顺便也记录…...

Scala学习笔记15: 文件和正则表达式

目录 第十五章 文件和正则表达式1- 读取行2- 从URL或者其它源读取3- 写入文本文件4- 序列化5- 正则表达式6- 正则表达式验证输入数据格式end 第十五章 文件和正则表达式 1- 读取行 在Scala中读取文件中的行可以通过不同的方法实现 ; 一种常见的方法是使用 scala.io.Source 对…...

外卖员面试现状

说明&#xff1a; 以下身份角色用符号代替 # 面试官 $ 求职者 # 看了您的简历你有两年半的送外卖经验&#xff0c;可以简单说一下您平时是怎么送外卖的吗? $ 我首先在平台接单然后到店里取餐&#xff0c;取到餐后到顾客留下的地址&#xff0c;再通知顾客取餐 # 你们也用电动…...

异步加载与动态加载

异步加载和动态加载在概念上有相似之处&#xff0c;但并不完全等同。 异步加载&#xff08;Asynchronous Loading&#xff09;通常指的是不阻塞后续代码执行或页面渲染的数据或资源加载方式。在Web开发中&#xff0c;异步加载常用于从服务器获取数据&#xff0c;而不需要用户等…...

MUNIK解读ISO26262--什么是DFA

我们在学习功能安全过程中&#xff0c;经常会听到很多安全分析方法&#xff0c;有我们熟知的FMEA(Failure Modes Effects Analysis)和FTA(Fault Tree Analysis)还有功能安全产品设计中几乎绕不开的FMEDA(Failure Modes Effects and Diagnostic Analysis)&#xff0c;相比于它们…...

启动spring boot项目停止 提示80端口已经被占用

可能的情况: 检查并结束占用进程: 首先,你需要确定哪个进程正在使用80端口。在Windows上,可以通过命令行输入netstat -ano | findstr LISTENING | findstr :80来查看80端口的PID,然后在任务管理器中结束该进程。在...

SOLIDWORKS分期许可(订阅形式),降低前期的投入成本!

SOLIDWORKS 分期许可使您能够降低前期软件成本&#xff0c;同时提供对 SOLIDWORKS 新版本和升级程序的即时访问&#xff0c;以及在每个期限结束时调整产品的灵活性&#xff0c;帮助您跟上市场需求和竞争压力的步伐。 目 录&#xff1a; ★ 1 什么是SOLIDWORKS分期许可 ★ 2 …...

详细分析Spring Boot 数据源配置的基本知识(附配置)

目录 前言1. 基本知识2. 模版3. 实战经验前言 对于Java的基本知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新)1. 基本知识 包括数据源的概念、连接池的作用、多数据源的实现与管理、Druid 连接池…...

海思SD3403/SS928V100开发(15)9轴IMU ICM-20948模块SPI接口调试

1.前言 芯片平台: 海思SD3403/SS928V100 操作系统平台: Ubuntu20.04.05【自己移植】 9轴IMU模块:ICM-20948 通讯接口: SPI 模块datasheet手册: https://download.csdn.net/download/jzwjzw19900922/89517096 2. 调试记录 2.1 pinmux配置 #spi0 bspmm 0x0102F01D8 …...

大力出奇迹:大语言模型的崛起与挑战

随着人工智能&#xff08;AI&#xff09;技术的迅猛发展&#xff0c;特别是在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;大语言模型&#xff08;LLM&#xff09;的出现与应用&#xff0c;彻底改变了我们与机器互动的方式。本文将探讨ChatGPT等大语言模型的定义、…...

【算法 - 哈希表】两数之和

这里写自定义目录标题 两数之和题目解析思路解法一 &#xff1a;暴力枚举 依次遍历解法二 &#xff1a;使用哈希表来做优化 核心逻辑为什么之前的暴力枚举策略不太好用了&#xff1f;所以&#xff0c;这就是 这道题选择 固定一个数&#xff0c;再与其前面的数逐一对比完后&…...

【深度学习】图形模型基础(5):线性回归模型第一部分:认识线性回归模型

1. 回归模型定义 最简单的回归模型是具有单一预测变量的线性模型&#xff0c;其基本形式如下&#xff1a; y a b x ϵ y a bx \epsilon yabxϵ 其中&#xff0c; a a a 和 b b b 被称为模型的系数或更一般地&#xff0c;模型的参数。 ϵ \epsilon ϵ 代表误差项&#…...

2024 年第十四届 APMCM 亚太地区大学生数学建模竞赛B题超详细解题思路+数据预处理问题一代码分享

B题 洪水灾害的数据分析与预测 亚太中文赛事本次报名队伍约3000队&#xff0c;竞赛规模体量大致相当于2024年认证杯&#xff0c;1/3个妈杯&#xff0c;1/10个国赛。赛题难度大致相当于0.6个国赛&#xff0c;0.8个妈杯。该比例仅供大家参考。 本次竞赛赛题难度A:B:C3:1:4&…...

Yarn有哪些功能特点

Yarn是一个由Facebook团队开发&#xff0c;并联合Google、Exponent和Tilde等公司推出的JavaScript包管理工具&#xff0c;旨在提供更优的包管理体验&#xff0c;解决npm&#xff08;Node Package Manager&#xff09;的一些痛点。Yarn的功能特点主要包括以下几个方面&#xff1…...

深度学习算法bert

bert 属于自监督学习的一种&#xff08;输入x的部分作为label&#xff09; 1. bert是 transformer 中的 encoder &#xff0c;不同的bert在encoder层数、注意力头数、隐藏单元数不同 2. 假设我们有一个模型 m &#xff0c;首先我们为某种任务使用大规模的语料库预训练模型 m …...

PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素&#xff0c;即人工神经元或感知器。它包括几个基本输入&#xff0c;例如 x1、x2… xn &#xff0c;如果总和大于激活电位&#xff0c;则会产生二进制输出。 样本神经元的示意图如下所述。 产生的输出可以被认为是具有激活电位或偏差的加权…...

docker-compose搭建minio对象存储服务器

docker-compose搭建minio对象存储服务器 最近想使用oss对象存储进行用户图片上传的管理&#xff0c;了解了一下例如aliyun或者腾讯云的oss对象存储服务&#xff0c;但是呢涉及到对象存储以及经费有限的缘故&#xff0c;决定自己手动搭建一个oss对象存储服务器&#xff1b; 首先…...

vue3使用pinia中的actions,需要调用接口的话

actions&#xff0c;需要调用接口的话&#xff0c;假如页面想要调用actions中的方法获取数据&#xff0c; 必须使用try catch async await 进行包裹&#xff0c;详情看下面代码 import {defineStore} from pinia import {reqCode,reqUserLogin} from ../../api/hospital/i…...

Python酷库之旅-第三方库Pandas(003)

目录 一、用法精讲 4、pandas.read_csv函数 4-1、语法 4-2、参数 4-3、功能 4-4、返回值 4-5、说明 4-6、用法 4-6-1、创建csv文件 4-6-2、代码示例 4-6-3、结果输出 二、推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、Python魔法之旅 …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...