当前位置: 首页 > news >正文

昇思25天学习打卡营第17天(+1)|Diffusion扩散模型

1. 学习内容复盘

本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。

本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请确保执行环境安装了GUI界面。

关于扩散模型(Diffusion Models)有很多种理解,本文的介绍是基于denoising diffusion probabilistic model DDPM),DDPM已经在(无)条件图像/音频/视频生成领域取得了较多显著的成果,现有的比较受欢迎的的例子包括由OpenAI主导的GLIDEDALL-E 2、由海德堡大学主导的潜在扩散和由Google Brain主导的图像生成

实际上生成模型的扩散概念已经在(Sohl-Dickstein et al., 2015)中介绍过。然而,直到(Song et al., 2019)(斯坦福大学)和(Ho et al., 2020)(在Google Brain)才各自独立地改进了这种方法。

本文是在Phil Wang基于PyTorch框架的复现的基础上(而它本身又是基于TensorFlow实现),迁移到MindSpore AI框架上实现的。

实验中我们采用离散时间(潜在变量模型)的观点,另外,读者也可以查看有关于扩散模型的其他几个观点

实验开始之前请确保安装并导入所需的库(假设您已经安装了MindSporedownloaddatasetmatplotlib以及tqdm)。

模型简介

什么是Diffusion Model?

如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。 Diffusion对于图像的处理包括以下两个过程:

  • 我们选择的固定(或预定义)正向扩散过程 q𝑞 :它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声
  • 一个学习的反向去噪的扩散过程 pθ𝑝𝜃 :通过训练神经网络从纯噪声开始逐渐对图像去噪,直到最终得到一个实际的图像

由 t𝑡 索引的正向和反向过程都发生在某些有限时间步长 T𝑇(DDPM作者使用 T=1000𝑇=1000)内。从t=0𝑡=0开始,在数据分布中采样真实图像 x0𝑥0(本文使用一张来自ImageNet的猫图像形象的展示了diffusion正向添加噪声的过程),正向过程在每个时间步长 t𝑡 都从高斯分布中采样一些噪声,再添加到上一个时刻的图像中。假定给定一个足够大的 T𝑇 和一个在每个时间步长添加噪声的良好时间表,您最终会在 t=T𝑡=𝑇 通过渐进的过程得到所谓的各向同性的高斯分布。

扩散模型实现原理

Diffusion 前向过程

所谓前向过程,即向图片上加噪声的过程。虽然这个步骤无法做到图片生成,但这是理解diffusion model以及构建训练样本至关重要的一步。 首先我们需要一个可控的损失函数,并运用神经网络对其进行优化。

设 𝑞(𝑥0) 是真实数据分布,由于𝑥0∼𝑞(𝑥0) ,所以我们可以从这个分布中采样以获得图像 𝑥0 。接下来我们定义前向扩散过程𝑞(𝑥𝑡|𝑥𝑡−1) ,在前向过程中我们会根据已知的方差 0<β1<β2<...<βT<1在每个时间步长 t 添加高斯噪声,由于前向过程的每个时刻 t 只与时刻 t-1 有关,所以也可以看做马尔科夫过程:

q(xt|xt−1)=N(xt;√1−βtxt−1,βtI)

回想一下,正态分布(也称为高斯分布)由两个参数定义:平均值 𝜇 和方差 𝜎2≥0 。基本上,在每个时间步长 𝑡 处的产生的每个新的(轻微噪声)图像都是从条件高斯分布中绘制的,其中

q(μt)=√1−βtxt−1

我们可以通过采样 𝜖∼𝑁(0,𝐼) 然后设置

q(xt)=√1−βtxt−1+√βtϵ

请注意, 𝛽𝑡 在每个时间步长 𝑡 (因此是下标)不是恒定的:事实上,我们定义了一个所谓的“动态方差”的方法,使得每个时间步长的 𝛽𝑡 可以是线性的、二次的、余弦的等(有点像动态学习率方法)。

因此,如果我们适当设置时间表,从 𝑥0 开始,我们最终得到 𝑥1,...,𝑥𝑡,...,𝑥𝑇,即随着 𝑡 的增大 𝑥𝑡 会越来越接近纯噪声,而𝑥𝑇 就是纯高斯噪声。

那么,如果我们知道条件概率分布𝑝(𝑥𝑡−1|𝑥𝑡) ,我们就可以反向运行这个过程:通过采样一些随机高斯噪声 𝑥𝑇,然后逐渐去噪它,最终得到真实分布𝑥0 中的样本。但是,我们不知道条件概率分布𝑝(𝑥𝑡−1|𝑥𝑡) 。这很棘手,因为需要知道所有可能图像的分布,才能计算这个条件概率。

Diffusion 逆向过程

为了解决上述问题,我们将利用神经网络来近似(学习)这个条件概率分布 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) , 其中 𝜃 是神经网络的参数。如果说前向过程(forward)是加噪的过程,那么逆向过程(reverse)就是diffusion的去噪推断过程,而通过神经网络学习并表示 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) 的过程就是Diffusion 逆向去噪的核心。

现在,我们知道了需要一个神经网络来学习逆向过程的(条件)概率分布。我们假设这个反向过程也是高斯的,任何高斯分布都由2个参数定义:

  • 由𝜇𝜃 参数化的平均值
  • 由 𝜇𝜃 参数化的方差

综上,我们可以将逆向过程公式化为

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)=𝑁(𝑥𝑡−1;𝜇𝜃(𝑥𝑡,𝑡),Σ𝜃(𝑥𝑡,𝑡))

其中平均值和方差也取决于噪声水平 𝑡 ,神经网络需要通过学习来表示这些均值和方差。

  • 注意,DDPM的作者决定保持方差固定,让神经网络只学习(表示)这个条件概率分布的平均值 𝜇𝜃 。
  • 本文我们同样假设神经网络只需要学习(表示)这个条件概率分布的平均值 𝜇𝜃 。

为了导出一个目标函数来学习反向过程的平均值,作者观察到 𝑞 和 𝑝𝜃 的组合可以被视为变分自动编码器(VAE)。因此,变分下界(也称为ELBO)可用于最小化真值数据样本 𝑥0 的似然负对数(有关ELBO的详细信息,请参阅VAE论文(Kingma等人,2013年)),该过程的ELBO是每个时间步长的损失之和 L=L0+L1+...+LT ,其中,每项的损失 Lt (除了 L0 )实际上是2个高斯分布之间的KL发散,可以明确地写为相对于均值的L2-loss!

如Sohl-Dickstein等人所示,构建Diffusion正向过程的直接结果是我们可以在条件是 𝑥0 (因为高斯和也是高斯)的情况下,在任意噪声水平上采样𝑥𝑡 ,而不需要重复应用 𝑞 去采样 𝑥𝑡 ,这非常方便。使用

αt:=1−βt

¯αt:=Πts=1αs

我们就有

q(xt|x0)=N(xt;√¯αtx0,(1−¯αt)I)

这意味着我们可以采样高斯噪声并适当地缩放它,然后将其添加到 𝑥0 中,直接获得 xt 。

请注意,¯αt 是已知 βt方差计划的函数,因此也是已知的,可以预先计算。这允许我们在训练期间优化损失函数 L的随机项。或者换句话说,在训练期间随机采样 t并优化 Lt

正如Ho等人所展示的那样,这种性质的另一个优点是可以重新参数化平均值,使神经网络学习(预测)构成损失的KL项中噪声的附加噪声。这意味着我们的神经网络变成了噪声预测器,而不是(直接)均值预测器。其中,平均值可以按如下方式计算:

μθ(xt,t)=1√αt(xt−βt√1−¯αtϵθ(xt,t))

最终的目标函数 Lt如下 (随机步长 t 由 (ϵ∼N(0,I))给定):

∥ϵ−ϵθ(xt,t)∥2=∥ϵ−ϵθ(√¯αtx0+√(1−¯αt)ϵ,t)∥2

在这里, x0是初始(真实,未损坏)图像, ϵ 是在时间步长 t采样的纯噪声,ϵθ(xt,t)是我们的神经网络。神经网络是基于真实噪声和预测高斯噪声之间的简单均方误差(MSE)进行优化的。

训练算法现在如下所示:

换句话说:

  • 我们从真实未知和可能复杂的数据分布中随机抽取一个样本 q(x0)

请注意,此列表仅包括在撰写本文,即202267日之前的重要作品。

目前,扩散模型的主要(也许唯一)缺点是它们需要多次正向传递来生成图像(对于像GAN这样的生成模型来说,情况并非如此)。然而,有正在进行中的研究表明只需要10个去噪步骤就能实现高保真生成。

  • 我们均匀地采样1T之间的噪声水平t(即,随机时间步长)

    • 我们从高斯分布中采样一些噪声,并使用上面定义的属性在 t 时间步上破坏输入

      • 神经网络被训练以基于损坏的图像 xt 来预测这种噪声,即基于已知的时间表 xt 上施加的噪声

        实际上,所有这些都是在批数据上使用随机梯度下降来优化神经网络完成的。

        U-Net神经网络预测噪声

        神经网络需要在特定时间步长接收带噪声的图像,并返回预测的噪声。请注意,预测噪声是与输入图像具有相同大小/分辨率的张量。因此,从技术上讲,网络接受并输出相同形状的张量。那么我们可以用什么类型的神经网络来实现呢?

        这里通常使用的是非常相似的自动编码器,您可能还记得典型的"深度学习入门"教程。自动编码器在编码器和解码器之间有一个所谓的"bottleneck"层。编码器首先将图像编码为一个称为"bottleneck"的较小的隐藏表示,然后解码器将该隐藏表示解码回实际图像。这迫使网络只保留bottleneck层中最重要的信息。

        在模型结构方面,DDPM的作者选择了U-Net,出自(Ronneberger et al.,2015)(当时,它在医学图像分割方面取得了最先进的结果)。这个网络就像任何自动编码器一样,在中间由一个bottleneck组成,确保网络只学习最重要的信息。重要的是,它在编码器和解码器之间引入了残差连接,极大地改善了梯度流(灵感来自于(He et al., 2015))。

      • 可以看出,U-Net模型首先对输入进行下采样(即,在空间分辨率方面使输入更小),之后执行上采样。

        构建Diffusion模型

        下面,我们逐步构建Diffusion模型。

        首先,我们定义了一些帮助函数和类,这些函数和类将在实现神经网络时使用。

        位置向量

        由于神经网络的参数在时间(噪声水平)上共享,作者使用正弦位置嵌入来编码t𝑡,灵感来自TransformerVaswani et al., 2017)。对于批处理中的每一张图像,神经网络"知道"它在哪个特定时间步长(噪声水平)上运行。

        SinusoidalPositionEmbeddings模块采用(batch_size, 1)形状的张量作为输入(即批处理中几个有噪声图像的噪声水平),并将其转换为(batch_size, dim)形状的张量,其中dim是位置嵌入的尺寸。然后,我们将其添加到每个剩余块中。

        ResNet/ConvNeXT

        接下来,我们定义U-Net模型的核心构建块。DDPM作者使用了一个Wide ResNet块(Zagoruyko et al., 2016),但Phil Wang决定添加ConvNeXTLiu et al., 2022)替换ResNet,因为后者在图像领域取得了巨大成功。

        在最终的U-Net架构中,可以选择其中一个或另一个,本文选择ConvNeXT块构建U-Net模型。

        Attention模块

        接下来,我们定义Attention模块,DDPM作者将其添加到卷积块之间。Attention是著名的Transformer架构(Vaswani et al., 2017),在人工智能的各个领域都取得了巨大的成功,从NLP蛋白质折叠Phil Wang使用了两种注意力变体:一种是常规的multi-head self-attention(如Transformer中使用的),另一种是LinearAttention(Shen et al., 2018),其时间和内存要求在序列长度上线性缩放,而不是在常规注意力中缩放。 要想对Attention机制进行深入的了解,请参照Jay Allamar精彩的博文

        组归一化

        DDPM作者将U-Net的卷积/注意层与群归一化(Wu et al., 2018)。下面,我们定义一个PreNorm类,将用于在注意层之前应用groupnorm

        条件U-Net

        我们已经定义了所有的构建块(位置嵌入、ResNet/ConvNeXT块、Attention和组归一化),现在需要定义整个神经网络了。请记住,网络 ϵθ(xt,t)𝜖𝜃(𝑥𝑡,𝑡) 的工作是接收一批噪声图像+噪声水平,并输出添加到输入中的噪声。

        更具体的: 网络获取了一批(batch_size, num_channels, height, width)形状的噪声图像和一批(batch_size, 1)形状的噪音水平作为输入,并返回(batch_size, num_channels, height, width)形状的张量。

        网络构建过程如下:

        • 首先,将卷积层应用于噪声图像批上,并计算噪声水平的位置
        • 接下来,应用一系列下采样级。每个下采样阶段由2ResNet/ConvNeXT + groupnorm + attention + 残差连接 + 一个下采样操作组成
        • 在网络的中间,再次应用ResNetConvNeXT块,并与attention交织
        • 接下来,应用一系列上采样级。每个上采样级由2ResNet/ConvNeXT+ groupnorm + attention + 残差连接 + 一个上采样操作组成
        • 最后,应用ResNet/ConvNeXT块,然后应用卷积层

        最终,神经网络将层堆叠起来,就像它们是乐高积木一样(但重要的是了解它们是如何工作的)。

        正向扩散

        我们已经知道正向扩散过程在多个时间步长T中,从实际分布逐渐向图像添加噪声,根据差异计划进行正向扩散。最初的DDPM作者采用了线性时间表:

        • 我们将正向过程方差设置为常数,从β1=10−4线性增加到βT=0.02

          • 但是,它在(Nichol et al., 2021)中表明,当使用余弦调度时,可以获得更好的结果。

          数据准备与处理

          在这里我们定义一个正则数据集。数据集可以来自简单的真实数据集的图像组成,如Fashion-MNISTCIFAR-10ImageNet,其中线性缩放为 [−1,1]

          每个图像的大小都会调整为相同的大小。有趣的是,图像也是随机水平翻转的。根据论文内容:我们在CIFAR10的训练中使用了随机水平翻转;我们尝试了有翻转和没有翻转的训练,并发现翻转可以稍微提高样本质量。

          本实验我们选用Fashion_MNIST数据集,我们使用download下载并解压Fashion_MNIST数据集到指定路径。此数据集由已经具有相同分辨率的图像组成,即28x28

          采样

          由于我们将在训练期间从模型中采样(以便跟踪进度),我们定义了下面的代码。采样在本文中总结为算法2

    从扩散模型生成新图像是通过反转扩散过程来实现的:我们从T开始,我们从高斯分布中采样纯噪声,然后使用我们的神经网络逐渐去噪(使用它所学习的条件概率),直到我们最终在时间步t=0结束。如上图所示,我们可以通过使用我们的噪声预测器插入平均值的重新参数化,导出一个降噪程度较低的图像 xt1。请注意,方差是提前知道的。

    理想情况下,我们最终会得到一个看起来像是来自真实数据分布的图像。

    训练过程

    下面,我们开始训练吧!详见平台实验结果。

    推理过程(从模型中采样)

    要从模型中采样,我们可以只使用上面定义的采样函数:详见平台实验结果。

    总结

    请注意,DDPM论文表明扩散模型是(非)条件图像有希望生成的方向。自那以后,diffusion得到了(极大的)改进,最明显的是文本条件图像生成。下面,我们列出了一些重要的(但远非详尽无遗的)后续工作:

  • 改进的去噪扩散概率模型(Nichol et al., 2021):发现学习条件分布的方差(除平均值外)有助于提高性能
  • 用于高保真图像生成的级联扩散模型([Ho et al., 2021):引入级联扩散,它包括多个扩散模型的流水线,这些模型生成分辨率提高的图像,用于高保真图像合成
  • 扩散模型在图像合成上击败了GANs(Dhariwal et al., 2021):表明扩散模型通过改进U-Net体系结构以及引入分类器指导,可以获得优于当前最先进的生成模型的图像样本质量
  • 无分类器扩散指南([Ho et al., 2021):表明通过使用单个神经网络联合训练条件和无条件扩散模型,不需要分类器来指导扩散模型
  • 具有CLIP Latents (DALL-E 2) 的分层文本条件图像生成 (Ramesh et al., 2022):在将文本标题转换为CLIP图像嵌入之前使用,然后扩散模型将其解码为图像
  • 具有深度语言理解的真实文本到图像扩散模型(ImageGen(Saharia et al., 2022):表明将大型预训练语言模型(例如T5)与级联扩散结合起来,对于文本到图像的合成很有效

参考

  • The Annotated Diffusion Model
  • 由浅入深了解Diffusion Model
  • 2.平台实验结果

相关文章:

昇思25天学习打卡营第17天(+1)|Diffusion扩散模型

1. 学习内容复盘 本文基于Hugging Face&#xff1a;The Annotated Diffusion Model一文翻译迁移而来&#xff0c;同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件&#xff0c;执行Python文件时&#xff0c;请确…...

【Leetcode笔记】406.根据身高重建队列

文章目录 1. 题目要求2.解题思路 注意3.ACM模式代码 1. 题目要求 2.解题思路 首先&#xff0c;按照每个人的身高属性&#xff08;即people[i][0]&#xff09;来排队&#xff0c;顺序是从大到小降序排列&#xff0c;如果遇到同身高的&#xff0c;按照另一个属性&#xff08;即p…...

Linux 安装pdfjam (PDF文件尺寸调整)

跟Ghostscript搭配使用&#xff0c;这样就可以将不同尺寸的PDF调整到相同尺寸合并了。 在 CentOS 上安装 pdfjam 需要安装 TeX Live&#xff0c;因为 pdfjam 是基于 TeX Live 的。以下是详细的步骤来安装 pdfjam&#xff1a; ### 步骤 1: 安装 EPEL 仓库 首先&#xff0c;安…...

python+playwright 学习-90 and_ 和 or_ 定位

前言 playwright 从v1.34 版本以后支持and_ 和 or_ 定位 XPath 中的and和or xpath 语法中我们常用的有text()、contains() 、ends_with()、starts_with() //*[text()="文本"] //*[contains(@id, "xx")] //...

亲子时光里的打脸高手,贾乃亮与甜馨的父爱如山

贾乃亮这波操作&#xff0c;简直是“实力打脸”界的MVP啊&#xff01; 7月5号&#xff0c;他一甩手&#xff0c;甩出张合照&#xff0c; 瞬间让多少猜测纷飞的小伙伴直呼&#xff1a;“脸疼不&#xff1f;”带着咱家小甜心甜馨&#xff0c; 回了哈尔滨老家&#xff0c;这趟亲…...

MySQL篇-SQL优化实战

SQL优化措施 通过我们日常开发的经验可以整理出以下高效SQL的守则 表主键使用自增长bigint加适当的表索引&#xff0c;需要强关联字段建表时就加好索引&#xff0c;常见的有更新时间&#xff0c;单号等字段减少子查询&#xff0c;能用表关联的方式就不用子查询&#xff0c;可…...

【MySQL备份】Percona XtraBackup总结篇

目录 1.前言 2.问题总结 2.1.为什么在恢复备份前需要准备备份 2.1.1. 保证数据一致性 2.1.2. 完成崩溃恢复过程 2.1.3. 解决非锁定备份的特殊需求 2.1.4. 支持增量和差异备份 2.1.5. 优化恢复性能 2.2.Percona XtraBackup的工作原理 3.注意事项 1.前言 在历经了详尽…...

【Git 】规范 Git 提交信息的工具 Commitizen

Commitizen是一个用于规范Git提交信息的工具&#xff0c;它旨在帮助开发者生成符合一定规范和风格的提交信息&#xff0c;从而提高代码维护的效率&#xff0c;便于追踪和定位问题。以下是对Commitizen的详细介绍。 1、Commitizen的作用与优势 规范提交信息&#xff1a;通过提供…...

ABB PPC902AE1013BHE010751R0101控制器 处理器 模块

ABB PPC902AE1013BHE010751R0101 该模块是用于自动化和控制系统的高性能可编程控制器。它旨在与其他自动化和控制设备一起使用&#xff0c;以提供完整的系统解决方案 是一种数字输入/输出模块&#xff0c;提供了高水平的性能和可靠性。它专为苛刻的工业应用而设计&#xff0c…...

大模型AIGC转行记录(一)

自从22年11月chat gpt上线以来&#xff0c;这一轮的技术浪潮便变得不可收拾。我记得那年9月份先是在技术圈内讨论&#xff0c;然后迅速地&#xff0c;全社会在讨论&#xff0c;各个科技巨头、金融机构、政府部门快速跟进。 软件开发行业过去与现状 我19年决定转码的时候&…...

element-ui Tree之懒加载叶子节点强制设置父级半选效果

效果&#xff1a; 前言&#xff1a; 我们是先只展示一级的&#xff0c;二级的数据是通过点击之后通过服务器获取数据&#xff0c;并不是全量数据直接一起返回回来的。 问题&#xff1a; 当你设置了默认选中的子节点&#xff0c;但是由于刚进入页面此时tree中数据暂是没有这个…...

Java项目:基于SSM框架实现的高校共享单车管理系统分前后台【ssm+B/S架构+源码+数据库+开题报告+任务书+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的高校共享单车管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、…...

【Android】自定义换肤框架02之自定义AssetManager和Resource

ResourceId是如何变成对应Resource的 在上一章中&#xff0c;我们已经讲过&#xff0c;apk中有个资源索引文件 其中保存了每个资源对应的id&#xff0c;name&#xff0c;type&#xff0c;path 资源文件的解析&#xff0c;主要涉及两个类&#xff0c;AssetManager和Resource …...

熵权法、熵值法、熵权TOPSIS三种方法的实用场景及优劣比较

在统计分析与决策分析中,熵权法、熵值法和熵权TOPSIS是三种常用的基于信息熵理论的方法。这些方法在处理多属性或多指标决策问题时,能够客观地反映数据的内在特性和各指标的相对重要性,为科学决策提供了有力支持。 熵权法 实用场景 熵权法是一种基于信息熵的客观赋权方法…...

无人机人员搜救

人员搜救-水域救援 水域搜救&#xff1a;快速水面搜查 物资抛投&#xff1a;救生物资抛投 绳索牵引&#xff1a;牵引救援绳索 领航船艇&#xff1a;水面侦察领航 人员搜救 昼夜搜救&#xff0c;精准定位 水域搜救 经纬 M300 RTK 搭载禅思 H20T 能够满足全天候作业需求&a…...

目标检测算法

讯飞星火 目标检测算法是计算机视觉领域的一项核心技术&#xff0c;用于在数字图像或视频中识别和定位一个或多个特定对象实例。这些算法通常需要确定对象的位置&#xff08;例如通过边界框&#xff09;和类别&#xff08;例如人、汽车、狗等&#xff09;。以下是一些流行的目…...

SpringSecurity 三更草堂学习笔记

0.简介 Spring Security是Spring家族中的一个安全管理框架。相比与另外一个安全框架Shiro&#xff0c;它提供了更丰富的功能&#xff0c;社区资源也比Shiro丰富。 一般来说中大型的项目都是使用SpringSecurity来做安全框架。小项目有Shiro的比较多&#xff0c;因为相比与Spring…...

鸿蒙生态应用开发白皮书V3.0

来源&#xff1a;华为&#xff1a; 近期历史回顾&#xff1a;...

CSS - 深入理解选择器的使用方式

CSS基本选择器 通配选择器元素选择器类选择器id 选择器 通配选择器 作用&#xff1a;可以选中所有HTML元素。语法&#xff1a; * {属性名&#xff1b;属性值; }举例&#xff1a; /* 选中所有元素 */ * {color: orange;font-size: 40px; }在清除样式方面有很大作用 元素选择器…...

动手学深度学习(Pytorch版)代码实践 -循环神经网络-54~55循环神经网络的从零开始实现和简洁实现

54循环神经网络的从零开始实现 import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2l import matplotlib.pyplot as plt import liliPytorch as lp# 读取H.G.Wells的时光机器数据集 batch_size, num_steps 32, …...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...