当前位置: 首页 > news >正文

【PYG】pytorch中size和shape有什么不同

  • 一般使用tensor.shape打印维度信息,因为简单直接

在 PyTorch 中,sizeshape 都用于获取张量的维度信息,但它们之间有细微的区别。下面是它们的定义和用法:

  1. size

    • size 是一个方法(size())和属性(size),用于返回张量的维度信息。
    • 使用方法 size() 可以选择获取特定维度的大小。
    • 示例:
      import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 size 方法(无参数)
      size_method = tensor.size()
      print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])# 使用 size 方法(带维度参数)
      size_dim1 = tensor.size(1)
      print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4
      
  2. shape

    • shape 是一个属性,直接返回张量的维度信息,表示为一个 torch.Size 对象。
    • shape 属性不能接受参数,因此不能直接用于获取特定维度的大小。
    • 示例:
      import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 shape 属性
      shape_attr = tensor.shape
      print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])
      

区别

  • size 方法和属性

    • size 方法可以接受参数,例如 size(dim),用于获取特定维度的大小。
    • size 属性直接返回一个 torch.Size 对象,表示张量的所有维度。
  • shape 属性

    • shape 属性只返回一个 torch.Size 对象,表示张量的所有维度。
    • shape 属性不能直接获取特定维度的大小。

总结

  • size 提供了方法和属性,方法可以接受参数来获取特定维度的大小。

  • shape 仅作为属性,返回整个张量的维度信息,不能接受参数。

  • tensor.size返回<built-in method size of Tensor object at 0x7fee569194a0>

  • tensor.shape返回<class ‘torch.Size’>,tensor.size()返回<class ‘torch.Size’>

示例对比

import torchtensor = torch.tensor([[1.0, 2.0, 3.0, 4.0],[2.0, 3.0, 4.0, 5.0],[3.0, 4.0, 5.0, 6.0]])# 使用 size 属性
size_attr = tensor.size
print(f"使用 size 属性: {size_attr}")  # 输出: 使用 size 属性: torch.Size([3, 4])# 使用 size 方法
size_method = tensor.size()
print(f"使用 size 方法: {size_method}")  # 输出: 使用 size 方法: torch.Size([3, 4])# 使用 size 方法获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 4# 使用 shape 属性
shape_attr = tensor.shape
print(f"使用 shape 属性: {shape_attr}")  # 输出: 使用 shape 属性: torch.Size([3, 4])

通过以上示例可以看出,size 方法和属性提供了更灵活的用法,而 shape 属性则是一个简单快捷的方法来获取整个张量的维度信息。


当你直接访问 tensor.size 而不带括号时,你访问的是一个方法对象,而不是调用该方法。要获取张量的尺寸,你需要调用该方法,使用 tensor.size()。让我们通过一些示例来澄清这一点。

示例解释

首先,我们创建一个张量:

import torchtensor = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])

获取张量的尺寸

  1. 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])
  1. 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0>

在第二个示例中,我们得到的是一个方法对象的引用,而不是实际的尺寸信息。

获取特定维度的大小

要获取特定维度的大小,你需要调用 size(dim),其中 dim 是你感兴趣的维度索引:

size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3

使用 shape 属性

shape 属性是更直接获取张量尺寸的一种方式:

shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

总结

  • tensor.size 返回一个方法对象引用。
  • tensor.size() 返回一个 torch.Size 对象,表示张量的形状。
  • tensor.size(dim) 返回特定维度的大小。
  • tensor.shape 直接返回一个 torch.Size 对象,表示张量的形状。

完整示例

import torchtensor = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])# 使用 size() 方法
size = tensor.size()
print(f"使用 size() 方法: {size}")  # 输出: 使用 size() 方法: torch.Size([2, 3])# 直接访问 size 属性
size_method = tensor.size
print(f"直接访问 size 属性: {size_method}")  # 输出: 直接访问 size 属性: <built-in method size of Tensor object at 0x7fee569194a0># 获取特定维度的大小
size_dim1 = tensor.size(1)
print(f"维度 1 的大小: {size_dim1}")  # 输出: 维度 1 的大小: 3# 使用 shape 属性
shape = tensor.shape
print(f"使用 shape 属性: {shape}")  # 输出: 使用 shape 属性: torch.Size([2, 3])

相关文章:

【PYG】pytorch中size和shape有什么不同

一般使用tensor.shape打印维度信息&#xff0c;因为简单直接 在 PyTorch 中&#xff0c;size 和 shape 都用于获取张量的维度信息&#xff0c;但它们之间有细微的区别。下面是它们的定义和用法&#xff1a; size&#xff1a; size 是一个方法&#xff08;size()&#xff09;和…...

备份服务器出错怎么办?

在企业的日常运营中&#xff0c;备份服务器扮演着至关重要的角色&#xff0c;它确保了数据的安全和业务的连续性。然而&#xff0c;备份服务器也可能遇到各种问题&#xff0c;如备份失败、数据损坏或备份系统故障等。这些问题可能导致数据丢失或业务中断&#xff0c;给企业带来…...

数据库(表)

要求如下&#xff1a; 一&#xff1a;数据库 1&#xff0c;登录数据库 mysql -uroot -p123123 2&#xff0c;创建数据库zoo create database zoo; Query OK, 1 row affected (0.01 sec) 3&#xff0c;修改字符集 mysql> use zoo;---先进入数据库zoo Database changed …...

Feign-未完成

Feign Java中如何实现接口调用&#xff1f;即如何发起http请求 前三种方式比较麻烦&#xff0c;在发起请求前&#xff0c;需要将Java对象进行序列化转为json格式的数据&#xff0c;才能发送&#xff0c;然后进行响应时&#xff0c;还需要把json数据进行反序列化成java对象。 …...

# [0705] Task06 DDPG 算法、PPO 算法、SAC 算法【理论 only】

easy-rl PDF版本 笔记整理 P5、P10 - P12 joyrl 比对 补充 P11 - P13 OpenAI 文档整理 ⭐ https://spinningup.openai.com/en/latest/index.html 最新版PDF下载 地址&#xff1a;https://github.com/datawhalechina/easy-rl/releases 国内地址(推荐国内读者使用)&#xff1a; 链…...

Open3D 点云CPD算法配准(粗配准)

目录 一、概述 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2配准后点云 一、概述 在Open3D中&#xff0c;CPD&#xff08;Coherent Point Drift&#xff0c;一致性点漂移&#xff09;算法是一种经典的点云配准方法&#xff0c;适用于无序点云的非…...

04-ArcGIS For JavaScript的可视域分析功能

文章目录 综述代码实现代码解析结果 综述 在数字孪生或者实景三维的项目中&#xff0c;视频融合和可视域分析&#xff0c;一直都是热点问题。Cesium中&#xff0c;支持对阴影的后处理操作&#xff0c;通过重新编写GLSL代码就能实现视域和视频融合的功能。ArcGIS之前支持的可视…...

Nestjs基础

一、创建项目 1、创建 安装 Nest CLI&#xff08;只需要安装一次&#xff09; npm i -g nestjs/cli 进入要创建项目的目录&#xff0c;使用 Nest CLI 创建项目 nest new 项目名 运行项目 npm run start 开发环境下运行&#xff0c;自动刷新服务 npm run start:dev 2、…...

DDL:针对于数据库、数据表、数据字段的操作

数据库的操作 # 查询所有数据 SHOW DATABASE; #创建数据库 CREATE DATABASE 2404javaee; #删除数据库 DROP DATABASE 2404javaee; 数据表的操作 #创建表 CREATE TABLE s_student( name VARCHAR(64), s_sex VARCHAR(32), age INT(3), salary FLOAT(8,2), c_course VARC…...

昇思学习打卡-5-基于Mindspore实现BERT对话情绪识别

本章节学习一个基本实践–基于Mindspore实现BERT对话情绪识别 自然语言处理任务的应用很广泛&#xff0c;如预训练语言模型例如问答、自然语言推理、命名实体识别与文本分类、搜索引擎优化、机器翻译、语音识别与合成、情感分析、聊天机器人与虚拟助手、文本摘要与生成、信息抽…...

Java中 普通for循环, 增强for循环( foreach) List中增删改查的注意事项

文章目录 俩种循环遍历增加删除1 根据index删除2 根据对象删除 修改 俩种循环 Java中 普通for循环&#xff0c; 增强for循环( foreach) 俩种List的遍历方式有何异同&#xff0c;性能差异&#xff1f; 普通for循环&#xff08;使用索引遍历&#xff09;&#xff1a; for (int…...

昇思25天学习打卡营第19天|LSTM+CRF序列标注

概述 序列标注指给定输入序列&#xff0c;给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取&#xff0c;包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。 条件随机场&#xff08…...

微服务: 初识 Spring Cloud

什么是微服务? 微服务就像把一个大公司拆成很多小部门&#xff0c;每个部门各自负责一块业务。这样一来&#xff0c;每个部门都可以独立工作&#xff0c;即使一个部门出了问题&#xff0c;也不会影响整个公司运作。 什么是Spring Cloud? Spring Cloud 是一套工具包&#x…...

探索InitializingBean:Spring框架中的隐藏宝藏

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 ✨欢迎加入探索MYSQL索引数据结构之旅✨ &#x1f44b; Spring框架的浩瀚海洋中&#x…...

JVM专题之垃圾收集算法

标记清除算法 第一步:标记 (找出内存中需要回收的对象,并且把它们标记出来) 第二步:清除 (清除掉被标记需要回收的对象,释放出对应的内存空间) 缺点: 标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需 要分配较大对象时,无法找到…...

2024年6月后2周重要的大语言模型论文总结:LLM进展、微调、推理和对齐

本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题&#xff0c;从模型优化和缩放到推理、基准测试和增强性能。 LLM进展与基准 1、 BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Com…...

大数据面试题之数仓(1)

目录 介绍下数据仓库 数仓的基本原理 数仓架构 数据仓库分层(层级划分)&#xff0c;每层做什么?分层的好处? 数据分层是根据什么? 数仓分层的原则与思路 知道数仓建模常用模型吗?区别、优缺点? 星型模型和雪花模型的区别?应用场景?优劣对比 数仓建模有哪些方式…...

[机器学习]-4 Transformer介绍和ChatGPT本质

Transformer Transformer是由Vaswani等人在2017年提出的一种深度学习模型架构&#xff0c;最初用于自然语言处理&#xff08;NLP&#xff09;任务&#xff0c;特别是机器翻译。Transformer通过自注意机制和完全基于注意力的架构&#xff0c;核心思想是通过注意力来捕捉输入序列…...

基于深度学习的电力分配

基于深度学习的电力分配是一项利用深度学习算法优化电力系统中的电力资源分配、负荷预测、故障检测和系统管理的技术。该技术旨在提高电力系统的运行效率、稳定性和可靠性。以下是关于这一领域的系统介绍&#xff1a; 1. 任务和目标 电力分配的主要任务是优化电力系统中的电力…...

飞书 API 2-4:如何使用 API 将数据写入数据表

一、引入 上一篇创建好数据表之后&#xff0c;接下来就是写入数据和对数据的处理。 本文主要探讨数据的插入、更新和删除操作。所有的操作都是基于上一篇&#xff08;飞书 API 2-4&#xff09;创建的数据表进行操作。上面最终的数据表只有 2 个字段&#xff1a;序号和邮箱。序…...

系统设计题-日活月活统计

一、题目描述 根据访问日志统计接口的日活和月活。日志格式为 yyyy-mm-dd|clientIP|url|result 其中yyyy-mm-dd代表年月日&#xff0c;一个日志文件中时间跨度保证都在同一个月内&#xff0c;但不保证每行是按照日期顺序。 clientIP为合法的点分十进制ipv4地址(1.1.1.1和1.01.…...

在CentOS7云服务器下搭建MySQL网络服务详细教程

目录 0.说明 1.卸载不要的环境 1.1查看当前环境存在的服务mysql或者mariadb 1.2卸载不要的环境 1.2.1先关闭相关的服务 1.2.2查询曾经下载的安装包 1.2.3卸载安装包 1.2.4检查是否卸载干净 2.配置MySQLyum源 2.1获取mysql关外yum源 2.2 查看当前系统结合系统配置yum…...

【数据结构与算法】快速排序霍尔版

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法》 期待您的关注 ​...

无人机5公里WiFi低延迟图传模组,抗干扰、长距离、低延迟,飞睿智能无线通信新标杆

在科技日新月异的今天&#xff0c;我们见证了无数通信技术的飞跃。从开始的电报、电话&#xff0c;到如今的4G、5G网络&#xff0c;再到WiFi的广泛应用&#xff0c;每一次技术的革新都极大地改变了人们的生活方式。飞睿智能5公里WiFi低延迟图传模组&#xff0c;它以其独特的优势…...

Kappa架构

1.Kappa架构介绍 Kappa架构由Jay Kreps提出&#xff0c;不同于Lambda同时计算和批计算并合并视图&#xff0c;Kappa只会通过流计算一条的数据链路计算并产生视图。Kappa同样采用了重新处理事件的原则&#xff0c;对于历史数据分析类的需求&#xff0c;Kappa要求数据的长期存储能…...

护网在即,助力安服仔漏洞扫描~

整合了个漏扫系统&#xff0c;安服仔必备~ 使用场景 网前布防&#xff0c;漏洞扫描&#xff0c;资产梳理 使用方法&#xff1a; 启动虚拟机后运行命令&#xff1a; ./StartSystemScript.sh 输入密码attack 启动完成后浏览器打开网站&#xff1a; http://IP:5000 相关账户…...

3C电子制造行业MES系统,提高企业生产效率

随着科技的不断进步&#xff0c;3C电子制造行业正迎来传统工厂向数字化工厂转型的阶段。在这场变革中&#xff0c;MES系统发挥着重要的作用&#xff0c;成为了企业变革的“智慧大脑”&#xff0c;引领着生产流程的优化和升级。 那么&#xff0c;MES系统究竟有哪些功能&#xf…...

C++ 多态和虚函数

参考C&#xff1a;多态 详解_c多态-CSDN博客 C多态——虚函数_c的a* a new b()是什么意思-CSDN博客 一.多态的概念 多态是在不同继承关系的类对象&#xff0c;去调用同一函数&#xff0c;产生了不同的行为。比如 Student 继承了 Person。 Person 对象买票全价&#xff0c;…...

七月记录上半

7.5 运行mysql脚本 mysql -u root -p 数据库名 < 脚本名 7.6 使用screen在服务器后台长期运行一个程序&#xff1a; screen -S 窗口名&#xff1a;创建窗口 执行程序脚本 ctrlad&#xff1a;退出窗口 screen -ls &#xff1a;查看所有窗口 screen -r 窗口号 &#…...

Wing FTP Server

文章目录 1.Wing FTP Server简介1.1主要特点1.2使用教程 2.高级用法2.1Lua脚本,案例1 1.Wing FTP Server简介 Wing FTP Server&#xff0c;是一个专业的跨平台FTP服务器端&#xff0c;它拥有不错的速度、可靠性和一个友好的配置界面。它除了能提供FTP的基本服务功能以外&#…...