昇思12天
FCN图像语义分割
1. 主题和背景
FCN是由UC Berkeley的Jonathan Long等人于2015年提出的,用于实现图像的像素级预测。
2. 语义分割的定义和重要性
语义分割是图像处理和机器视觉中的关键技术,旨在对图像中的每个像素进行分类。它在很多领域有重要应用,如人脸识别、物体检测、医学影像、自动驾驶等。
3. FCN模型简介
- 全卷积网络:FCN通过全卷积层进行像素级预测,不使用全连接层。
- 主要技术:
- 卷积化:使用VGG-16作为骨干网络,将全连接层转化为卷积层。
- 跳跃架构:结合高层语义信息和低层细节信息。
- 多次上采样:反卷积层逐步上采样到原图大小。
4. FCN-8s网络
- 数据准备:下载并处理训练数据。
- 导入VGG-16部分预训练权重。
- 损失函数:使用交叉熵损失函数。
- 自定义评价指标:
- Pixel Accuracy (PA): 标记正确的像素占总像素的比例。
- Mean Pixel Accuracy (MPA): 每个类内被正确分类像素数的比例平均。
- Mean Intersection over Union (MIoU): 交集和并集之比。
- Frequency Weighted Intersection over Union (FWIoU): 根据类出现频率加权。
5. 模型训练
使用VGG-16的预训练参数,实例化损失函数和优化器,编译并训练FCN-8s网络。
6. 模型评估与推理
展示了训练好的模型在推理阶段的效果。
7. 总结
FCN的优势在于:
- 接受任意大小的输入图像。
- 更加高效,避免了重复存储和计算问题。
不足之处在于:
- 结果不够精细,尤其是边界处。
- 没有充分考虑像素间的关系,缺乏空间一致性。
8. 引用
[1]Long, Jonathan, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for Semantic Segmentation.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
总结
- FCN的创新点:引入全卷积层,实现了端到端的图像分割。
- 技术优势:可以接受任意大小的输入图像,提高了计算效率。
- 应用广泛:在多个AI领域,如自动驾驶、医学影像等方面有重要应用。
- 不足之处:精细度有待提高,需进一步考虑像素间关系和空间一致性。
相关文章:

昇思12天
FCN图像语义分割 1. 主题和背景 FCN是由UC Berkeley的Jonathan Long等人于2015年提出的,用于实现图像的像素级预测。 2. 语义分割的定义和重要性 语义分割是图像处理和机器视觉中的关键技术,旨在对图像中的每个像素进行分类。它在很多领域有重要应用…...

【postgresql】 基础知识学习
PostgreSQL是一个高度可扩展的开源对象关系型数据库管理系统(ORDBMS),它以其强大的功能、灵活性和可靠性而闻名。 官网地址:https://www.postgresql.org/ 中文社区:文档目录/Document Index: 世界上功能最强大的开源…...

按键控制LED流水灯模式定时器时钟
目录 1.定时器 2. STC89C52定时器资源 3.定时器框图 4. 定时器工作模式 5.中断系统 1)介绍 2)流程图:编辑 3)STC89C52中断资源 4)定时器和中断系统 5)定时器的相关寄存器 6.按键控制LED流水灯模…...

【Docker安装】OpenEuler系统下部署Docker环境
【Docker安装】OpenEuler系统下部署Docker环境 前言一、本次实践介绍1.1 本次实践规划1.2 本次实践简介二、检查本地环境2.1 检查操作系统版本2.2 检查内核版本2.3 检查yum仓库三、卸载Docker四、部署Docker环境4.1 配置yum仓库4.2 检查可用yum仓库4.3 安装Docker4.4 检查Docke…...

小程序 使用 UI 组件 Vant Weapp 、vant组件样式覆盖
注意:使用vant 包,需要把app.json 中 的"style:v2" 这句去掉 不然会出现样式混乱的问题 Vant Weapp组件库的使用 参考官网 vant官网 Vant Weapp 组件样式覆盖 Vant Weapp 基于微信小程序的机制,为开发者提供了 3 种修改组件样式…...

(接上一篇)前端弄一个变量实现点击次数在前端页面实时更新
实现点击次数在前端页面实时更新,确实需要在前端维护一个变量来存储当前的点击次数。这个变量通常在Vue组件的data选项中定义,并在组件的生命周期方法或事件处理函数中更新。 以下是实现这一功能的基本步骤: 定义变量:在Vue组件的…...

迭代器模式在金融业务中的应用及其框架实现
引言 迭代器模式(Iterator Pattern)是一种行为设计模式,它提供了一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示。在金融业务中,迭代器模式可以用于遍历复杂的数据结构,如交易…...

浏览器插件利器-allWebPluginV2.0.0.14-stable版发布
allWebPlugin简介 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件产品,致力于将浏览器插件重新应用到所有浏览器。它将现有ActiveX插件直接嵌入浏览器,实现插件加载、界面显示、接口调用、事件回调等。支持谷歌、火狐等浏…...

机器学习训练之使用静态图加速
前言 MindSpore有两种运行模式:动态图模式和静态图模式。默认情况下是动态图模式,也可以手工切换为静态图模式。 动态图模式 动态图的特点是计算图的构建和计算同时发生,符合Python的解释执行方式。在调试模型时较为方便,能够实…...

数据结构速成--图
由于是速成专题,因此内容不会十分全面,只会涵盖考试重点,各学校课程要求不同 ,大家可以按照考纲复习,不全面的内容,可以看一下小编主页数据结构初阶的内容,找到对应专题详细学习一下。 目录 …...

昇思25天学习打卡营第12天|FCN图像语义分割
文章目录 昇思MindSpore应用实践基于MindSpore的FCN图像语义分割1、FCN 图像分割简介2、构建 FCN 模型3、数据预处理4、模型训练自定义评价指标 Metrics 5、模型推理结果 Reference 昇思MindSpore应用实践 本系列文章主要用于记录昇思25天学习打卡营的学习心得。 基于MindSpo…...

昇思MindSpore学习笔记4-03生成式--Diffusion扩散模型
摘要: 记录昇思MindSpore AI框架使用DDPM模型给图像数据正向逐步添加噪声,反向逐步去除噪声的工作原理和实际使用方法、步骤。 一、概念 1. 扩散模型Diffusion Models DDPM(denoising diffusion probabilistic model) (无)条件…...

Go:hello world
开启转职->Go开发工程师 下面是我的第一个go的程序 在上面的程序介绍: 1、package main 第一行代码package main定义了包名。必须在源文件中非注释的第一行指明这个文件属于哪个包,如:package main。package main表示一个可独立执行的程…...

JVM专题之内存模型以及如何判定对象已死问题
体验与验证 2.4.5.1 使用visualvm **visualgc插件下载链接 :https://visualvm.github.io/pluginscenters.html https://visualvm.github.io/pluginscenters.html **选择对应JDK版本链接--->Tools--->Visual GC** 2.4.5.2 堆内存溢出 * **代码** java @RestCont…...

vscode使用Git的常用操作
主打一个实用 查看此篇之前请先保证电脑安装了Git,安装教程很多,可自行搜索 一.初始化本地仓库🔴 使用vscode打开项目文件夹如图所使初始化仓库,相当于命令行的git init 二.提交到暂存区🔴 二.提交到新版本…...

RPC与REST
RPC与REST 访问远程服务1远程服务调用(Remote Procedure Call,RPC):RPC 解决什么问题?如何解决的?为什么要那样解决?1.1 先解决两个进程间如何交换数据的问题,也就是进程间通信&…...

计数排序的实现
原理 对一个数组进行遍历,再创建一个count数组 每找到一个值则在count数组中对应的位置加一,再在count数组中找到数字上方的count值,count值为几,则打印几次数组中的值. 开空间 相对映射 排序的实现 void CountSort(int* a, i…...

【Qt】QTableWidget设置可以选择多行多列,并能复制选择的内容到剪贴板
比如有一个 QTableWidget*m_tbwQuery m_tbwQuery->installEventFilter(this); //进行事件过滤处理//设置可以选择多行多列 m_tbwQuery->setSelectionMode(QAbstractItemView::MultiSelection); m_tbwQuery->setSelectionBehavior(QAbstractItemView::SelectItems); …...

跨越界限的温柔坚守
跨越界限的温柔坚守 —— 郑乃馨与男友的甜蜜抉择在这个光怪陆离、瞬息万变的娱乐圈里,每一段恋情像是夜空中划过的流星,璀璨短暂。然而,当“郑乃馨与男友甜蜜约会”的消息再次跃入公众视野,它不仅仅是一段简单的爱情故事…...

Vue3 对于内嵌Iframe组件进行缓存
1:应用场景 对于系统内所有内嵌iframe 的页面均通过同一个路由/iframe, 在router.query内传入不同src 参数,在同一组件内显示iframe 内嵌页面,对这些页面分别进行缓存。主要是通过v-show 控制显示隐藏从而达到iframe 缓存逻辑 2:…...

L04_MySQL知识图谱
这些知识点你都掌握了吗?大家可以对着问题看下自己掌握程度如何?对于没掌握的知识点,大家自行网上搜索,都会有对应答案,本文不做知识点详细说明,只做简要文字或图示引导。 1 基础 1.1内部组件结构 1.2 数据…...

什么是CNN,它和传统机器学习有什么区别
CNN,全称为卷积神经网络(Convolutional Neural Networks),是一种专门用于处理具有网格结构数据(如图像、视频)的深度学习模型。它由多个卷积层、池化层、全连接层等组成,通过卷积运算和池化操作…...

游戏开发面试题3
unity如何判断子弹射击到敌人,如果子弹特别快怎么办 使用物理学碰撞检测。使用Unity的物理组件,如Rigidbody和Collider,将子弹和敌人都设置为有一定的物理碰撞属性,当子弹碰到敌人的时候,就会触发OnCollisionEnter()事…...

postman请求访问:认证失败,无法访问系统资源
1、使用postman时,没有传入相应的token,就会出现这种情况,此时需要把token放进去 发现问题: { "msg": "请求访问:/getInfo,认证失败,无法访问系统资源", "code": 401 } 1…...

Apache Seata新特性支持 -- undo_log压缩
本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 Apache Seata新特性支持 – undo_log压缩 Seata新特性支持 – undo_log压缩 现状 & 痛点…...

Java中的软件架构重构与升级策略
Java中的软件架构重构与升级策略 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 重构与升级的背景和意义 软件架构在应用开发中起着至关重要的作用。随着技术…...

设置Docker中时区不生效的问题
项目中使用docker-compose,并通过以下方式设置了时区 environment:- SET_CONTAINER_TIMEZONEtrue- CONTAINER_TIMEZONEAsia/Shanghai 但是并没有正确生效,网上有很多博客都在推荐这个做法,另外一种是使用标准环境标量 -TZAsia/Shangehai …...

LeetCode436:寻找右区间
题目链接:436. 寻找右区间 - 力扣(LeetCode) class Solution { public:vector<int> findRightInterval(vector<vector<int>>& intervals) {vector<pair<int, int>> startIntervals;int n intervals.size…...

前端JS特效第22集:html5音乐旋律自定义交互特效
html5音乐旋律自定义交互特效,先来看看效果: 部分核心的代码如下(全部代码在文章末尾): <!DOCTYPE html> <html lang"en" > <head> <meta charset"UTF-8"> <title>ChimeTime™</title…...

pyrender 离线渲染包安装教程
pyrender 离线渲染包安装教程 安装 安装 官方安装教程:https://pyrender.readthedocs.io/en/latest/install/index.html#installmesa 首先 pip install pyrenderclang6.0安装 下载地址:https://releases.llvm.org/download.html#6.0.0 注意下好是叫:clangllvm-6…...