Pandas 入门 15 题
Pandas 入门 15 题
- 1. 相关知识点
- 1.1 修改DataFrame列名
- 1.2 获取行列数
- 1.3 显示前n行
- 1.4 条件数据选取值
- 1.5 创建新列
- 1.6 删去重复的行
- 1.7 删除空值的数据
- 1.9 修改列名
- 1.10 修改数据类型
- 1.11 填充缺失值
- 1.12 数据上下合并
- 1.13 pivot_table透视表的使用
- 1.14 melt透视表的使用
- 1.15 条件查询及排序
- 2. 题目
- 2.1 从表中创建 DataFrame((Pandas 数据结构)
- 2.2 获取 DataFrame 的大小(数据检验)
- 2.3 显示前三行(数据检验)
- 2.4 数据选取(数据选取)
- 2.5 创建新列(数据选取)
- 2.6 删去重复的行(数据清理)
- 2.7 删去丢失的数据(数据清理)
- 2.8 修改列(数据清理)
- 2.9 重命名列(数据清理)
- 2.10 改变数据类型(数据清理)
- 2.11 填充缺失值(数据清理)
- 1.12 重塑数据:连结(表格重塑)
- 1.13 数据重塑:透视(表格重塑)
- 2.14 重塑数据:融合(表格重塑)
- 2.15 方法链(高级技巧)
1. 相关知识点
1.1 修改DataFrame列名
data=pd.DataFrame(student_data,columns=['student_id','age'])
1.2 获取行列数
players.shape
1.3 显示前n行
employees.head(n)
1.4 条件数据选取值
students.loc[students['student_id']==101,['name','age']]
students[students['student_id']==101][['name','age']]
students.query('`student_id`==101')[['name','age']]
1.5 创建新列
- 处理数据的时候,根据已知列得到新的列,可以考虑使用
pandas.DataFrame.assign()函数 - 使用assign函数不会改变原数据,而是返回一个新的DataFrame对象,包含所有现有列和新生成的列
- 注意:assign和apply函数的主要区别在于前者不改变原数据,apply函数是在原数据的基础上添加新列
employees['bonus']=employees['salary'].apply(lambda x:x*2)
employees=employees.assign(bonus=employees.salary*2)
employees['bonus']=employees['salary']*2
1.6 删去重复的行
customers.drop_duplicates(subset=['email'],keep='first')
1.7 删除空值的数据
# axis=0代表行
students.dropna(subset=['name'],how='any', axis=0,inplace = False)
1.9 修改列名
data=data.rename(columns={'Dest':'iata_code','index':'from'})
students.columns=['student_id','first_name','last_name','age_in_years']
1.10 修改数据类型
students['grade']=students['grade'].astype('int')
1.11 填充缺失值
products['quantity'].fillna(0,inplace=True)# products.replace({'quantity':{# None:0# }},inplace=True)
1.12 数据上下合并
df1._append(df2)
# pd.concat([df1,df2],axis=0)
1.13 pivot_table透视表的使用
weather.pivot_table(index='month',values='temperature',columns='city',aggfunc='sum')
1.14 melt透视表的使用
- df.pivot() 将长数据集转换成宽数据集,df.melt() 则是将宽数据集变成长数据集
pd.melt(report,id_vars['product'],var_name='quarter',value_name='sales')
1.15 条件查询及排序
animals[animals['weight'] > 100].sort_values(by='weight', ascending=False)
2. 题目
2.1 从表中创建 DataFrame((Pandas 数据结构)


import pandas as pddef createDataframe(student_data: List[List[int]]) -> pd.DataFrame: data=pd.DataFrame(student_data,columns=['student_id','age'])return data
student_data=[[1,15],[2,11],[3,11],[4,20]]print(createDataframe(student_data))
2.2 获取 DataFrame 的大小(数据检验)


import pandas as pddef getDataframeSize(players: pd.DataFrame) -> List[int]:return list(players.shape)
2.3 显示前三行(数据检验)


import pandas as pddef selectFirstRows(employees: pd.DataFrame) -> pd.DataFrame:return employees.head(3)
2.4 数据选取(数据选取)


import pandas as pddef selectData(students: pd.DataFrame) -> pd.DataFrame:return students.loc[students['student_id']==101,['name','age']]# return students[students['student_id']==101][['name','age']]# return students.query('`student_id`==101')[['name','age']]
2.5 创建新列(数据选取)



import pandas as pddef createBonusColumn(employees: pd.DataFrame) -> pd.DataFrame:employees['bonus']=employees['salary'].apply(lambda x:x*2)# employees=employees.assign(bonus=employees.salary*2)# employees['bonus']=employees['salary']*2return employees
2.6 删去重复的行(数据清理)


import pandas as pddef dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:return customers.drop_duplicates(subset=['email'],keep='first')
2.7 删去丢失的数据(数据清理)


import pandas as pddef dropMissingData(students: pd.DataFrame) -> pd.DataFrame:# axis=0代表行return students.dropna(subset=['name'],how='any', axis=0,inplace = False)
2.8 修改列(数据清理)


import pandas as pddef modifySalaryColumn(employees: pd.DataFrame) -> pd.DataFrame:employees=employees.assign(salary=employees.salary*2)# employees['salary']=employees['salary'].apply(lambda x:x*2)# employees['salary']=employees['salary']*2return employees
2.9 重命名列(数据清理)


import pandas as pddef renameColumns(students: pd.DataFrame) -> pd.DataFrame:students.columns=['student_id','first_name','last_name','age_in_years']# dic={# 'id':'student_id',# 'first':'first_name',# 'last':'last_name',# 'age':'age_in_years'}# students=students.rename(columns=dic)return students
2.10 改变数据类型(数据清理)


import pandas as pddef changeDatatype(students: pd.DataFrame) -> pd.DataFrame:students['grade']=students['grade'].astype('int')return students
2.11 填充缺失值(数据清理)


import pandas as pddef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:products['quantity'].fillna(0,inplace=True)# products['quantity']=products['quantity'].fillna(0)# products.replace({'quantity':{# None:0# }},inplace=True)return products
1.12 重塑数据:连结(表格重塑)



import pandas as pddef concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:return df1._append(df2)# return pd.concat([df1,df2],axis=0)
1.13 数据重塑:透视(表格重塑)



import pandas as pddef pivotTable(weather: pd.DataFrame) -> pd.DataFrame:return weather.pivot_table(index='month',values='temperature',columns='city',aggfunc='sum')# return weather.set_index(['month','city']).unstack()['temperature
2.14 重塑数据:融合(表格重塑)


import pandas as pddef meltTable(report: pd.DataFrame) -> pd.DataFrame:report=pd.melt(report,id_vars=['product'],var_name='quarter',value_name='sales')return report
2.15 方法链(高级技巧)



import pandas as pddef findHeavyAnimals(animals: pd.DataFrame) -> pd.DataFrame:animals = animals[animals['weight'] > 100].sort_values(by='weight', ascending=False)return animals[['name']]
相关文章:
Pandas 入门 15 题
Pandas 入门 15 题 1. 相关知识点1.1 修改DataFrame列名1.2 获取行列数1.3 显示前n行1.4 条件数据选取值1.5 创建新列1.6 删去重复的行1.7 删除空值的数据1.9 修改列名1.10 修改数据类型1.11 填充缺失值1.12 数据上下合并1.13 pivot_table透视表的使用1.14 melt透视表的使用1.1…...
使用微信开发者工具连接gitee
编写代码 打开微信开发者工具 编写小程序代码 提交代码 在微信开发者工具提交代码到gitee仓库的步骤: 1.在gitee创建仓库,得到仓库url 2.微信开发者工具设置远程仓库 点击版本管理-->点击设置-->网络和认证-->认证方式选择 使用用户名和…...
论文复现-基于决策树算法构建银行贷款审批预测模型(金融风控场景)
作者Toby,来源公众号:Python风控模型,基于决策树算法构建银行贷款审批预测模型 目录 1.金融风控论文复现 2.项目背景介绍 3.决策树介绍 4.数据集介绍 5.合规风险提醒 6.技术工具 7.实验过程 7.1导入数据 7.2数据预处理 7.3数据可…...
力扣225题解析:使用队列实现栈的三种解法(Java实现)
引言 在算法和数据结构中,如何用队列实现栈是一个常见的面试题和实际应用问题。本文将探讨力扣上的第225题,通过不同的方法来实现这一功能,并分析各种方法的优劣和适用场景。 问题介绍 力扣225题目要求我们使用队列实现栈的下列操作&#…...
网络协议与标准
协议: 语法 ;计算机的算法,二进制 语义 ;不要有出现歧义的 同步 ; 同步还原信息,收发同步 标准: ISO(国际标准化组织) IEEE(电气和电子工程师学会) 局域网技术 一.协议…...
154. 寻找旋转排序数组中的最小值 II(困难)
154. 寻找旋转排序数组中的最小值 II 1. 题目描述2.详细题解3.代码实现3.1 Python3.2 Java 1. 题目描述 题目中转:154. 寻找旋转排序数组中的最小值 II 2.详细题解 该题是153. 寻找旋转排序数组中的最小值的进阶题,在153. 寻找旋转排序数组中的最小值…...
5、MP4解复用---AAC+H264
MP4 MP4同样是一种容器格式,是由一个一个Box组成,每个Box又分为Header与Data,Data又包含很多子Box,具体的MP4文件结构也看过,内部Box结构比较复杂,一般不写MP4解释器的话,Box结构不用了解太细&a…...
计算样本之间的相似度
文章目录 前言一、距离度量1.1 欧几里得距离(Euclidean Distance)1.2 曼哈顿距离(Manhattan Distance)1.3 切比雪夫距离(Chebyshev Distance)1.4 闵可夫斯基距离(Minkowski Distance)…...
2-5 softmax 回归的简洁实现
我们发现通过深度学习框架的高级API能够使实现线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在上节中一样, 继续使用Fashion-MNIST数据集,并保持批量大小为256。 import torch from torc…...
我 17 岁创业,今年 20 岁,月入 70 万,全靠低代码
想象一下,当你还在高中的课桌前埋头苦读时,有人告诉你三年后你将成为一家年收入超过 100 万美元的科技公司的创始人。 听起来是不是像天方夜谭? 但对于 20 岁的小伙子 Jacob Klug 来说,这就是他的真实人生。 在大多数同龄人还在为…...
【Python】已解决:urllib.error.HTTPError: HTTP Error 403: Forbidden
文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:urllib.error.HTTPError: HTTP Error 403: Forbidden 一、分析问题背景 在使用Python的urllib库中的urlopen或urlretrieve函数下载文件时,有时会遇到…...
昇思12天
FCN图像语义分割 1. 主题和背景 FCN是由UC Berkeley的Jonathan Long等人于2015年提出的,用于实现图像的像素级预测。 2. 语义分割的定义和重要性 语义分割是图像处理和机器视觉中的关键技术,旨在对图像中的每个像素进行分类。它在很多领域有重要应用…...
【postgresql】 基础知识学习
PostgreSQL是一个高度可扩展的开源对象关系型数据库管理系统(ORDBMS),它以其强大的功能、灵活性和可靠性而闻名。 官网地址:https://www.postgresql.org/ 中文社区:文档目录/Document Index: 世界上功能最强大的开源…...
按键控制LED流水灯模式定时器时钟
目录 1.定时器 2. STC89C52定时器资源 3.定时器框图 4. 定时器工作模式 5.中断系统 1)介绍 2)流程图:编辑 3)STC89C52中断资源 4)定时器和中断系统 5)定时器的相关寄存器 6.按键控制LED流水灯模…...
【Docker安装】OpenEuler系统下部署Docker环境
【Docker安装】OpenEuler系统下部署Docker环境 前言一、本次实践介绍1.1 本次实践规划1.2 本次实践简介二、检查本地环境2.1 检查操作系统版本2.2 检查内核版本2.3 检查yum仓库三、卸载Docker四、部署Docker环境4.1 配置yum仓库4.2 检查可用yum仓库4.3 安装Docker4.4 检查Docke…...
小程序 使用 UI 组件 Vant Weapp 、vant组件样式覆盖
注意:使用vant 包,需要把app.json 中 的"style:v2" 这句去掉 不然会出现样式混乱的问题 Vant Weapp组件库的使用 参考官网 vant官网 Vant Weapp 组件样式覆盖 Vant Weapp 基于微信小程序的机制,为开发者提供了 3 种修改组件样式…...
(接上一篇)前端弄一个变量实现点击次数在前端页面实时更新
实现点击次数在前端页面实时更新,确实需要在前端维护一个变量来存储当前的点击次数。这个变量通常在Vue组件的data选项中定义,并在组件的生命周期方法或事件处理函数中更新。 以下是实现这一功能的基本步骤: 定义变量:在Vue组件的…...
迭代器模式在金融业务中的应用及其框架实现
引言 迭代器模式(Iterator Pattern)是一种行为设计模式,它提供了一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示。在金融业务中,迭代器模式可以用于遍历复杂的数据结构,如交易…...
浏览器插件利器-allWebPluginV2.0.0.14-stable版发布
allWebPlugin简介 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件产品,致力于将浏览器插件重新应用到所有浏览器。它将现有ActiveX插件直接嵌入浏览器,实现插件加载、界面显示、接口调用、事件回调等。支持谷歌、火狐等浏…...
机器学习训练之使用静态图加速
前言 MindSpore有两种运行模式:动态图模式和静态图模式。默认情况下是动态图模式,也可以手工切换为静态图模式。 动态图模式 动态图的特点是计算图的构建和计算同时发生,符合Python的解释执行方式。在调试模型时较为方便,能够实…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...
flow_controllers
关键点: 流控制器类型: 同步(Sync):发布操作会阻塞,直到数据被确认发送。异步(Async):发布操作非阻塞,数据发送由后台线程处理。纯同步(PureSync…...
对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...
