GEE代码实例教程详解:洪水灾害监测
简介
在本篇博客中,我们将使用Google Earth Engine (GEE) 进行洪水灾害监测。通过分析Sentinel-1雷达数据,我们可以识别特定时间段内的洪水变化情况。
背景知识
Sentinel-1数据集
Sentinel-1是欧洲空间局提供的雷达卫星数据集,它能够提供连续的地表监测,即使在云层覆盖的情况下也能获取数据。
洪水监测
洪水监测是评估洪水灾害影响和进行灾害管理的重要手段。利用雷达数据的后向散射变化可以识别洪水事件。
完整代码
// 定义研究区域的坐标点
var cor = [[54.07394733345745, 36.81321992370517],[54.79904498970745, 36.81321992370517],[54.79904498970745, 37.45259869689526],[54.07394733345745, 37.45259869689526],[54.07394733345745, 36.81321992370517]
];// 创建多边形区域
var roi = ee.Geometry.Polygon(cor);// 将地图中心设置为研究区域
Map.centerObject(roi);// 定义时间范围
var year_start = '2019';
var year_end = '2020';// 定义去斑函数
function speckel(img) {return img.focalMedian(100, 'square', 'meters').copyProperties(img, img.propertyNames());
}// 获取2019年3月的Sentinel-1数据
var after = ee.ImageCollection("COPERNICUS/S1_GRD").filterBounds(roi).filterDate(year_start, year_end).filter(ee.Filter.calendarRange(3, 3, 'month')).filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')).filter(ee.Filter.eq('instrumentMode', 'IW')).select('VV').map(speckel).min();// 将“之后”的图像添加到地图上
Map.addLayer(after.clip(roi), [], 'after', false);// 获取2019年2月的Sentinel-1数据
var before = ee.ImageCollection("COPERNICUS/S1_GRD").filterBounds(roi).filterDate(year_start, year_end).filter(ee.Filter.calendarRange(2, 2, 'month')).filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')).filter(ee.Filter.eq('instrumentMode', 'IW')).select('VV').map(speckel).min();// 将“之前”的图像添加到地图上
Map.addLayer(before.clip(roi), [], 'before', false);// 计算洪水变化情况
var change = before.subtract(after).rename('flood');// 将洪水变化图像添加到地图上
Map.addLayer(change.clip(roi), [], 'flood', false);// 打印洪水变化直方图
print(ui.Chart.image.histogram(change, roi, 30)
);// 应用阈值来识别洪水区域
Map.addLayer(change.gt(7).clip(roi), [], 'flood_thr', false);// 定义洪水阈值
var flood_thr = change.gt(7);
var flood_mask = flood_thr.updateMask(flood_thr);
var flood_area = flood_mask.multiply(ee.Image.pixelArea().divide(1e6));// 计算洪水区域面积
var area_sum = flood_area.reduceRegion({reducer: ee.Reducer.sum(),geometry: roi,scale: 100
}).get('flood');// 打印洪水区域面积
print(ee.Number(area_sum).round());
代码详解
1. 定义研究区域
创建一个多边形区域roi,用于限定分析的地理范围,并设置地图中心。
2. 定义去斑函数
定义speckel函数,使用局部中值滤波去除Sentinel-1图像的斑点噪声。
3. 获取Sentinel-1数据
获取“之前”和“之后”的Sentinel-1数据,分别对应洪水发生前后的时间段。
4. 计算洪水变化情况
通过“之前”和“之后”的图像相减,计算洪水变化情况。
5. 可视化洪水变化
将洪水变化图像添加到地图上,并打印直方图。
6. 应用阈值识别洪水区域
使用阈值gt(7)来识别洪水区域,并将结果添加到地图上。
7. 计算洪水区域面积
计算洪水区域的总面积,并打印结果。
结论
本教程展示了如何使用GEE和Sentinel-1雷达数据进行洪水灾害监测。通过计算洪水前后的雷达后向散射差异,我们可以识别洪水区域并估算洪水面积。
进一步探索
GEE提供了丰富的工具和方法来进行环境和灾害监测分析。在后续的教程中,我们将继续探索GEE在不同领域的应用。
相关文章:
GEE代码实例教程详解:洪水灾害监测
简介 在本篇博客中,我们将使用Google Earth Engine (GEE) 进行洪水灾害监测。通过分析Sentinel-1雷达数据,我们可以识别特定时间段内的洪水变化情况。 背景知识 Sentinel-1数据集 Sentinel-1是欧洲空间局提供的雷达卫星数据集,它能够提供…...
运维锅总详解系统设计原则
本文对CAP、BASE、ACID、SOLID 原则、12-Factor 应用方法论等12种系统设计原则进行分析举例,希望对您在进行系统设计、理解系统运行背后遵循的原理有所帮助! 一、CAP、BASE、ACID简介 以下是 ACID、CAP 和 BASE 系统设计原则的详细说明及其应用举例&am…...
深度学习笔记: 最详尽解释预测系统的分类指标(精确率、召回率和 F1 值)
欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家! 预测系统的分类指标(精确率、召回率和 F1 值) 简介 让我们来谈谈预测系统的分类指标以及对精确率、召回…...
GEE代码实例教程详解:MODIS土地覆盖分类与面积计算
简介 在本篇博客中,我们将使用Google Earth Engine (GEE) 对MODIS土地覆盖数据进行分析。通过MODIS/061/MCD12Q1数据集,我们可以识别不同的土地覆盖类型,并计算每种类型的总面积。 背景知识 MODIS MCD12Q1数据集 MODIS/061/MCD12Q1是NASA…...
LT86101UXE 国产原装 HDMI2.0 / DVI中继器方案 分辨率 4Kx2K 用于多显示器 DVI/HDMI电缆扩展模块
1. 描述 Lontium LT86101UXE HDMI2.0 / DVI中继器特性高速中继器符合HDMI2.0/1.4规范,最大6 gbps高速数据率、自适应均衡RX输入和pre-emphasized TX输出支持长电缆应用程序,没有晶体在船上保存BOM成本,内部灵活的PCB TX巷交换路由。 LT86101UXE HDMI2.0/DVI中继器自动检测线缆损…...
FastApi中的常见请求类型
FastApi中的常见请求类型 后端开发语言中,我钟情于node,高效的异步处理真是让我眼前一亮,同时,简单易懂的语法也让我非常倾心 但是但是,因为考虑要写一个深度学习算法的后端接口,所以不得不选用python作为…...
服务器,云、边缘计算概念简单理解
目录 服务器,云、边缘计算概念简单理解 一、服务器 二、云计算 三、边缘计算 服务器和云之间区别 性质 可用性 弹性扩展 管理和维护 成本 应用场景 服务器,云、边缘计算概念简单理解 一、服务器 概念简单理解: 服务器是计算机网络上最重要的设备之一,它在网络…...
【Linux系列2】Cmake安装记录
方法一 1. 查看当前cmake版本 [rootlocalhost ~]# cmake -version cmake version 2.8.12.22. 进行卸载 [rootlocalhost ~]# yum remove -y cmake3. 进行安装包的下载,也可以下载好安装包后传至相应的目录 [rootlocalhost ~]# mkdir /opt/cmake [rootlocalhost ~…...
C++ STL 多线程库用法介绍
目录 一:Atomic: 二:Thread 1. 创建线程 2. 小心移动(std::move)线程 3. 如何创建带参数的线程 4. 线程参数是引用类型时,要小心谨慎。 5. 获取线程ID 6. jthread 7. 如何在线程中使用中断 stop_token 三:如何…...
Jmeter实现接口自动化
自动化测试理论知识 什么是自动化测试? 让程序或工具代替人为执行测试用例什么样的项目适合做自动化? 1、项目周期长 --多长算长?(自己公司运营项目) 2、需求稳定(更多具体功能/模块) 3、需要…...
【大模型】多模型在大模型中的调度艺术:解锁效率与协同的新境界
多模型在大模型中的调度艺术:解锁效率与协同的新境界 引言一、多模型与大模型的概念解析二、多模型调度的必要性三、多模型调度的关键技术3.1 负载均衡与动态分配3.2 模型间通信与协作3.3 模型选择与优化 四、多模型运行优化策略4.1 异构计算平台的利用4.2 模型压缩…...
LeetCode 704, 290, 200
目录 704. 二分查找题目链接标签思路代码 290. 单词规律题目链接标签思路代码 200. 岛屿数量题目链接标签思路代码 704. 二分查找 题目链接 704. 二分查找 标签 数组 二分查找 思路 这道题是 二分查找 最经典的一道题,掌握了本题的思想就进入了 二分 思想的大…...
如何利用Java进行大数据处理?
如何利用Java进行大数据处理? 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 1. 引言 在当今信息爆炸的时代,处理大数据是许多应用程序和系统的核心需求之一。Java作为一种…...
【论文通读】GUICourse: From General Vision Language Model to Versatile GUI Agent
GUICourse: From General Vision Language Model to Versatile GUI Agent 前言AbstractMotivationSolutionGUICourseGUIEnvGUIEnv-globalGUIEnv-local GUIActGUIAct (web-single)GUIAct (web-multi)GUIAct (smartphone) GUIChat ExperimentsMain ResultAblation Study Conclusi…...
王道考研数据机构:中缀表达式转为后缀表达式
实现方法: 初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。从左到右处理各个元素,直到末尾。可能遇到三种情况: 遇到操作数。直接加入后缀表达式遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式&…...
PL/SQL安装+汉化教程
PL/SQL安装教程 一、安装: 登陆官网:PL/SQL Developer - Allround Automations下载 下载PL/SQL稳定版本12.0.7 根据自己计算机版本安装相适配的版本。我这里安装X64-bit版本 进行安装: 根据情况去更改安装,我这里全部下一步…...
Qt | Qt 线程相关类概述和举例
Qt 是一个广泛用于跨平台应用开发的框架。在 Qt 中,多线程支持是其核心特性之一,它允许开发者在不同平台上创建并发应用。以下是 Qt 中与线程相关的类概述及其使用示例。 Qt 中的线程相关类 QThread QThread 是 Qt 中用于创建和管理线程的基类。通过派生并重写 run() 函数…...
Linux 复现Docker NAT网络
Linux 复现Docker NAT网络 docker 网络的构成分为宿主机docker0网桥和为容器创建的veth 对构成。这个默认网络命名空间就是我们登陆后日常使用的命名空间 使用ifconfig命令查看到的就是默认网络命名空间,docker0就是网桥,容器会把docker0当成路由&…...
HBuilder X 小白日记03-用css制作简单的交互动画
:hover选择器,用于选择鼠标指针浮动在上面的元素。 :hover选择器可用于所有元素,不只是链接 :link选择器 设置指向未被访问页面的链接的样式 :visited选择器 用于设置指向已被访问的页面的链接 :active选择器 用于活动链接...
【深度学习练习】心脏病预测
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、什么是RNN RNN与传统神经网络最大的区别在于,每次都会将前一次的输出结果,带到下一隐藏层中一起训练。如下图所示: …...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
深度解析云存储:概念、架构与应用实践
在数据爆炸式增长的时代,传统本地存储因容量限制、管理复杂等问题,已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性,成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理,云存储正重塑数据存储与…...
工厂方法模式和抽象工厂方法模式的battle
1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...
7种分类数据编码技术详解:从原理到实战
在数据分析和机器学习领域,分类数据(Categorical Data)的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型,如性别(男/女)、颜色(红/绿/蓝)或产品类…...
