当前位置: 首页 > news >正文

Yolov10训练,转化onnx,推理

                         yolov10对于大目标的效果好,小目标不好

一、如果你训练过yolov5,yolov8,的话那么你可以直接用之前的环境就行

目录

一、如果你训练过yolov5,yolov8,的话那么你可以直接用之前的环境就行

二、配置好后就可以配置文件了

三、然后开始训练

推理图片

转化onnx模型


具体你可以看我另一篇的文章,yolov5-7.0实现训练推理以及C#部署onnx-CSDN博客

我这是配置的cuda  调用GPU的版本,下载可以再我的博文里下载 

cuda各个版本的Pytorch下载网页版,模型转化工具,免费gpt链接_cuda国内镜像下载网站-CSDN博客

安装的教程可以直接再网上搜索既可以了

二、配置好后就可以配置文件了

下载源码 GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

建议你手动下载预训练模型,和在命令行中运行训练,因为你用右键run有可能直接下载 v8的预训练模型。

下载预训练模型 Https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt

最小模型是N  最大模型是X  区别就是,越小的就越快,精度相对的会低一点点,越大的就越慢,精度会高一点,建议用S和M的比较中和,设备不行的就用N

   用labelimg标注后这种放,和yolov5一样,coco数据集

然后再目录中创建一个data文件夹,再其中创建一个data.yaml的文件

然后配置数据集读取路径

三、然后开始训练

你可以在目录中创建三个文件,detect.py,export.py,train.py文件像这样

填入代码

train.py

from ultralytics import YOLOv10model_yaml_path = "ultralytics/cfg/models/v10/yolov10s.yaml"
#数据集配置文件
data_yaml_path = 'data/data.yaml'
#预训练模型
pre_model_name = 'yolov10s.pt'if __name__ == '__main__':#加载预训练模型model = YOLOv10(model_yaml_path).load(pre_model_name)#训练模型results = model.train(data=data_yaml_path,epochs=150,batch=4,name='train/exp')

打开v10算法代码文件夹的根目录  在路径中写cmd回车 

进入这里,查看你的环境

用代码

conda activate 你的环境名

然后就进入了

直接运行   --cache 是用你的磁盘跑,如果电脑不牛逼  加上这个 可以提升速度

python train.py --cache

然后就可以运行了

四、推理图片

打开刚刚创建的detect.py文件 添加代码 就可以推理了

from ultralytics import YOLOv10import torch
if  torch.cuda.is_available():device = torch.device("cuda")
else:raise Exception("CUDA is not")model_path = r"H:\\DL\\yolov10-main\\runs\\detect\\train\\exp\\weights\\best.pt"
model = YOLOv10(model_path)
results = model(source=r'H:\DL\yolov10-main\dataDakeset\CCD_dataBlue25\test',name='predict/exp',conf=0.45,save=True,device='0')

五、转化onnx模型

打开刚刚创建的export.py 文件 添加代码,转哪中模型直接替换onnx就行

from ultralytics import YOLOv10
model=YOLOv10("H:\\DL\\yolov10-main\\runs\\detect\\train\\exp\\weights\\best.pt")model.export(format='onnx')
# help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle'

自此yolov10python的训练推理转化流程全部结束,有问题可以评论区问或者私信

相关文章:

Yolov10训练,转化onnx,推理

yolov10对于大目标的效果好,小目标不好 一、如果你训练过yolov5,yolov8,的话那么你可以直接用之前的环境就行 目录 一、如果你训练过yolov5,yolov8,的话那么你可以直接用之前的环境就行 二、配置好后就可以配置文件…...

GEE代码实例教程详解:洪水灾害监测

简介 在本篇博客中,我们将使用Google Earth Engine (GEE) 进行洪水灾害监测。通过分析Sentinel-1雷达数据,我们可以识别特定时间段内的洪水变化情况。 背景知识 Sentinel-1数据集 Sentinel-1是欧洲空间局提供的雷达卫星数据集,它能够提供…...

运维锅总详解系统设计原则

本文对CAP、BASE、ACID、SOLID 原则、12-Factor 应用方法论等12种系统设计原则进行分析举例,希望对您在进行系统设计、理解系统运行背后遵循的原理有所帮助! 一、CAP、BASE、ACID简介 以下是 ACID、CAP 和 BASE 系统设计原则的详细说明及其应用举例&am…...

深度学习笔记: 最详尽解释预测系统的分类指标(精确率、召回率和 F1 值)

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家! 预测系统的分类指标(精确率、召回率和 F1 值) 简介 让我们来谈谈预测系统的分类指标以及对精确率、召回…...

GEE代码实例教程详解:MODIS土地覆盖分类与面积计算

简介 在本篇博客中,我们将使用Google Earth Engine (GEE) 对MODIS土地覆盖数据进行分析。通过MODIS/061/MCD12Q1数据集,我们可以识别不同的土地覆盖类型,并计算每种类型的总面积。 背景知识 MODIS MCD12Q1数据集 MODIS/061/MCD12Q1是NASA…...

LT86101UXE 国产原装 HDMI2.0 / DVI中继器方案 分辨率 4Kx2K 用于多显示器 DVI/HDMI电缆扩展模块

1. 描述 Lontium LT86101UXE HDMI2.0 / DVI中继器特性高速中继器符合HDMI2.0/1.4规范,最大6 gbps高速数据率、自适应均衡RX输入和pre-emphasized TX输出支持长电缆应用程序,没有晶体在船上保存BOM成本,内部灵活的PCB TX巷交换路由。 LT86101UXE HDMI2.0/DVI中继器自动检测线缆损…...

FastApi中的常见请求类型

FastApi中的常见请求类型 后端开发语言中,我钟情于node,高效的异步处理真是让我眼前一亮,同时,简单易懂的语法也让我非常倾心 但是但是,因为考虑要写一个深度学习算法的后端接口,所以不得不选用python作为…...

服务器,云、边缘计算概念简单理解

目录 服务器,云、边缘计算概念简单理解 一、服务器 二、云计算 三、边缘计算 服务器和云之间区别 性质 可用性 弹性扩展 管理和维护 成本 应用场景 服务器,云、边缘计算概念简单理解 一、服务器 概念简单理解: 服务器是计算机网络上最重要的设备之一,它在网络…...

【Linux系列2】Cmake安装记录

方法一 1. 查看当前cmake版本 [rootlocalhost ~]# cmake -version cmake version 2.8.12.22. 进行卸载 [rootlocalhost ~]# yum remove -y cmake3. 进行安装包的下载,也可以下载好安装包后传至相应的目录 [rootlocalhost ~]# mkdir /opt/cmake [rootlocalhost ~…...

C++ STL 多线程库用法介绍

目录 一:Atomic: 二:Thread 1. 创建线程 2. 小心移动(std::move)线程 3. 如何创建带参数的线程 4. 线程参数是引用类型时,要小心谨慎。 5. 获取线程ID 6. jthread 7. 如何在线程中使用中断 stop_token 三:如何…...

Jmeter实现接口自动化

自动化测试理论知识 什么是自动化测试? 让程序或工具代替人为执行测试用例什么样的项目适合做自动化? 1、项目周期长 --多长算长?(自己公司运营项目) 2、需求稳定(更多具体功能/模块) 3、需要…...

【大模型】多模型在大模型中的调度艺术:解锁效率与协同的新境界

多模型在大模型中的调度艺术:解锁效率与协同的新境界 引言一、多模型与大模型的概念解析二、多模型调度的必要性三、多模型调度的关键技术3.1 负载均衡与动态分配3.2 模型间通信与协作3.3 模型选择与优化 四、多模型运行优化策略4.1 异构计算平台的利用4.2 模型压缩…...

LeetCode 704, 290, 200

目录 704. 二分查找题目链接标签思路代码 290. 单词规律题目链接标签思路代码 200. 岛屿数量题目链接标签思路代码 704. 二分查找 题目链接 704. 二分查找 标签 数组 二分查找 思路 这道题是 二分查找 最经典的一道题,掌握了本题的思想就进入了 二分 思想的大…...

如何利用Java进行大数据处理?

如何利用Java进行大数据处理? 大家好,我是微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 1. 引言 在当今信息爆炸的时代,处理大数据是许多应用程序和系统的核心需求之一。Java作为一种…...

【论文通读】GUICourse: From General Vision Language Model to Versatile GUI Agent

GUICourse: From General Vision Language Model to Versatile GUI Agent 前言AbstractMotivationSolutionGUICourseGUIEnvGUIEnv-globalGUIEnv-local GUIActGUIAct (web-single)GUIAct (web-multi)GUIAct (smartphone) GUIChat ExperimentsMain ResultAblation Study Conclusi…...

王道考研数据机构:中缀表达式转为后缀表达式

实现方法: 初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。从左到右处理各个元素,直到末尾。可能遇到三种情况: 遇到操作数。直接加入后缀表达式遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式&…...

PL/SQL安装+汉化教程

PL/SQL安装教程 一、安装: 登陆官网:PL/SQL Developer - Allround Automations下载 下载PL/SQL稳定版本12.0.7 根据自己计算机版本安装相适配的版本。我这里安装X64-bit版本 进行安装: 根据情况去更改安装,我这里全部下一步…...

Qt | Qt 线程相关类概述和举例

Qt 是一个广泛用于跨平台应用开发的框架。在 Qt 中,多线程支持是其核心特性之一,它允许开发者在不同平台上创建并发应用。以下是 Qt 中与线程相关的类概述及其使用示例。 Qt 中的线程相关类 QThread QThread 是 Qt 中用于创建和管理线程的基类。通过派生并重写 run() 函数…...

Linux 复现Docker NAT网络

Linux 复现Docker NAT网络 docker 网络的构成分为宿主机docker0网桥和为容器创建的veth 对构成。这个默认网络命名空间就是我们登陆后日常使用的命名空间 使用ifconfig命令查看到的就是默认网络命名空间,docker0就是网桥,容器会把docker0当成路由&…...

HBuilder X 小白日记03-用css制作简单的交互动画

:hover选择器,用于选择鼠标指针浮动在上面的元素。 :hover选择器可用于所有元素,不只是链接 :link选择器 设置指向未被访问页面的链接的样式 :visited选择器 用于设置指向已被访问的页面的链接 :active选择器 用于活动链接...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...