世界人工智能大会 | 江行智能大模型解决方案入选“AI赋能新型工业化创新应用优秀案例”
日前,2024世界人工智能大会暨人工智能全球治理高级别会议在上海启幕。本次大会主题为“以共商促共享,以善治促善智”,汇聚了上千位全球科技、产业界领军人物,共同探讨大模型、数据、新型工业化等人工智能深度发展时代下的热点话题。
在“AI赋工业,数智启未来”人工智能赋能新型工业化主题论坛上,江行智能“基于复合大模型的新能源智能运维解决方案”成功入选AI赋能新型工业化创新应用优秀案例。

江行智能推出大模型解决方案
自2022年末,ChatGPT发布以来,大模型的热潮就开始在国内外涌现。无论是追求普适性的通用大模型,还是深耕专业领域的行业大模型,都预示着人工智能的边界在不断拓展,我们与大模型技术的距离正以前所未有的速度拉近。时至今日,电力生产应用场景大模型、多模态预训练大模型等接连发布,参赛者们从不同角度切入赛道。

在此背景下,江行智能也推出「源问大模型」,打造基于复合大模型的新能源智能运维解决方案。通过综合分析新能源集控领域规章文本、巡检图像、设备传感器数据信息、电力设备运行过程中的声纹信息等多种数据源,利用多模态处理能力,大幅提升大模型在电力系统中的分析精度和应用广度。
创新多层次模型架构,提供科学决策支持
江行智能将「源问大模型」定义为电力能源领域的垂直大模型。针对发电功率预测、设备故障识别、负荷精准预测等业务需求及行业知识管理与可信问答需求,创新性提出面向垂直领域业务需求的大模型总体架构和方案。「源问大模型」采用多层次模型架构设计,包括基础服务层、智能框架层、大模型支撑层和领域应用层,确保对电力设备的实时监控与数据采集分析。

江行智能在其中引入混合专家模型(Mixture of Experts)技术,通过融合多个“专家”模型,显著提升了模型处理复杂任务的能力。混合专家模型的门控机制及门控输出机制可精准调控各“专家”参与程度,保障每一份算力都用在刀刃上,在降低计算资源冗余消耗的同时,使得模型可根据不同的输入动态调配最适配的“专家”,进一步提升问题解决的速度与精确度。
江行智能「源问大模型」不仅能够实现电力系统环境风险因素实时监测、识别分析人员违规行为,还能通过数据分析和模型预测实现设备故障的早期预警和处理。通过自动细化和调整模型参数,模型可以持续进化,灵活适应外界需求,加速能源电力领域智能化进程,助推行业技术创新。
目前,江行智能「源问大模型」可与现有业务系统无缝对接,提供智能化业务支持,解决方案不仅适用于传统火力发电,也兼容水力、风能和太阳能等可再生能源的发电方式,并涵盖电网调度、发电智能巡视、发电功率预测、负荷预测和设备维护等多个环节,实现全方位赋能电力生命周期管理。
在竞争日益激烈的大模型赛道上,江行智能大模型也将不断优化扩展,推出更加智能化、定制化的解决方案,为电力能源行业进一步发展提供强有力的技术支持。
相关文章:
世界人工智能大会 | 江行智能大模型解决方案入选“AI赋能新型工业化创新应用优秀案例”
日前,2024世界人工智能大会暨人工智能全球治理高级别会议在上海启幕。本次大会主题为“以共商促共享,以善治促善智”,汇聚了上千位全球科技、产业界领军人物,共同探讨大模型、数据、新型工业化等人工智能深度发展时代下的热点话题…...
css浮动及清除浮动副作用的三种解决方法
css浮动及清除浮动副作用的三种解决方法 文章目录 css浮动及清除浮动副作用的三种解决方法一、浮动定义二、浮动元素设置三、清除浮动副作用方法一四、清除浮动副作用方法二五、清除浮动副作用方法三 一、浮动定义 浮动(Float)是CSS中一种布局技术&…...
图像类别生成数字标签
类别 COCO 2017数据集分类标签。coco2017数据集下载。 cls [background, person, bicycle, car, motorcycle, airplane, bus,train, truck, boat, traffic light, fire hydrant,stop sign, parking meter, bench, bird, cat, dog,horse, sheep, cow, elephant, bear, zebra,…...
【Python】已解决:SyntaxError: invalid character in identifier
文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:SyntaxError: invalid character in identifier 一、分析问题背景 在Python编程中,SyntaxError: invalid character in identifier是一个常见的编译…...
RDNet实战:使用RDNet实现图像分类任务(一)
论文提出的模型主要基于对传统DenseNet架构的改进和复兴,通过一系列创新设计,旨在提升模型性能并优化其计算效率,提出了RDNet模型。该模型的主要特点和改进点: 1. 强调并优化连接操作(Concatenation) 论文…...
Java小白入门到实战应用教程-介绍篇
writer:eleven 介绍 编程语言介绍 编程语言按照抽象层次和硬件交互的方式划分为低级编程语言和高级编程语言。 低级编程语言更接近计算机硬件层面,通常具有执行效率高的特点,但是由于注重计算机底层交互,所以编程难度相对较大。 高级编程…...
python脚本“文档”撰写——“诱骗”ai撰写“火火的动态”python“自动”脚本文档
“火火的动态”python“自动”脚本文档,又从ai学习搭子那儿“套”来,可谓良心质量👍👍。 (笔记模板由python脚本于2024年07月07日 15:15:33创建,本篇笔记适合喜欢钻研python和页面源码的coder翻阅) 【学习的细节是欢悦…...
若依 / ruoyi-ui:执行yarn dev 报错 esnext.set.difference.v2.js in ./src/utils/index.js
一、报错信息 These dependencies were not found: * core-js/modules/esnext.set.difference.v2.js in ./src/utils/index.js * core-js/modules/esnext.set.intersection.v2.js in ./src/utils/index.js * core-js/modules/esnext.set.is-disjoint-from.v2.js in ./src/utils…...
移动端Vant-list的二次封装,查询参数重置
Vant-list的二次封装 场景:在写项目需求的时候,移动端有用到vant-list组件。后续需求更新说要对列表数据页加搜索和筛选的功能。发现每次筛选完得在页面内手动重置一次查询参数。不方便,所以封了一层。 二次封装代码 <template><…...
SMU Summer 2024 Contest Round 2
[ABC357C] Sierpinski carpet - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路:通过因为图形的生成过程是完全一样的。可以通过递归,不断分形。函数process(x,y,k)定义为以坐标(x,y)为左上角,填充sqrt3(k)级的地毯。 int n; int c[800][800]; 默认全为…...
Qt:11.输入类控件(QLineEdit-单行文本输入控件、QTextEdit-多行文本输入控件、QComboBox-下拉列表的控件)
一、QLineEdit-单行文本输入控件: 1.1QLineEdit介绍: QLineEdit 是 Qt 库中的一个单行文本输入控件,不能换行。允许用户输入和编辑单行文本。 1.2属性介绍: inputMask 设置输入掩码,以限定输入格式。setInputMask(con…...
Qt 音频编程实战项目
一Qt 音频基础知识 QT multimediaQMediaPlayer 类:媒体播放器,主要用于播放歌曲、网络收音 机等功能。QMediaPlaylist 类:专用于播放媒体内容的列表。 二 音频项目实战程序 //版本5.12.8 .proQT core gui QT multimedia greate…...
C#委托事件的实现
1、事件 在C#中事件是一种特殊的委托类型,用于在对象之间提供一种基于观察者模式的通知机制。 1.1、事件的发送方定义了一个委托,委托类型的声明包含了事件的签名,即事件处理器方法的签名。 1.2、事件的订阅者可以通过运算符来注册事件处理器…...
Java策略模式在动态数据验证中的应用
在软件开发中,数据验证是一项至关重要的任务,它确保了数据的完整性和准确性,为后续的业务逻辑处理奠定了坚实的基础。然而,不同的数据来源往往需要不同的验证规则,如何在不破坏代码的整洁性和可维护性的同时࿰…...
【Linux】shell基础知识点(updating)
1.输出重定向2.多命令批量执行(; 、&&、 ||)3.脚本不同方式执行的区别(source、bash、sh、./)4.理解环境变量5.export6.引号的使用last.命令相关 1.输出重定向 3种数据流: stdin:标准输入…...
Python基础练习•二
# ## Python编程入门作业 # # ### 选择题 # 1. 假设等号右侧变量都已知的情况下,下列哪个语句在Python中是⾮法的?( B ) # A. x y z 1 # B. x (y z 1) # C. x, y y, x # D. x y # 2. 关于Python变量,下列…...
智慧科技照亮水利未来:深入剖析智慧水利解决方案如何助力水利行业实现高效、精准、可持续的管理
目录 一、智慧水利的概念与内涵 二、智慧水利解决方案的核心要素 1. 物联网技术:构建全面感知网络 2. 大数据与云计算:实现数据高效处理与存储 3. GIS与三维可视化:提升决策支持能力 4. 人工智能与机器学习:驱动决策智能化 …...
Vue3学习笔记(n.0)
vue指令之v-for 首先创建自定义组件(practice5.vue): <!--* Author: RealRoad1083425287qq.com* Date: 2024-07-05 21:28:45* LastEditors: Mei* LastEditTime: 2024-07-05 21:35:40* FilePath: \Fighting\new_project_0705\my-vue-app\…...
基于Spring Boot的在线考试系统
您好!我是专注于计算机技术研究的码农小野。如果您对在线考试系统感兴趣或有相关开发需求,欢迎随时联系我。 开发语言:Java 数据库:MySQL 技术:Spring Boot框架,Java技术 工具:Eclipse&…...
Day65 代码随想录打卡|回溯算法篇---组合总和II
题目(leecode T40): 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意:解集不能包含…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
