当前位置: 首页 > news >正文

ModelScope 垂类检测系列模型介绍

文章目录

  • ModelScope介绍
  • 垂类模型介绍
  • 调用方式
    • 1 Demo Service
    • 2 Notebook
    • 3 本地使用
    • * 二次开发
  • 总结

ModelScope介绍

ModelScope 是阿里达摩院推出的 中文版模型即服务(MaaS, Model as a Service)共享平台。该平台在2022年的云栖大会上发布,之前也有大量的PR文章进行介绍和推广(如:官方介绍,CSDN文章 等),这里就不再赘述。

作为其中的一个贡献者,刚开始接触ModelScope,给我的第一感觉就是,这不就是一个中文版的Hugging Face 嘛,还有必要再搞一个这个东西吗?我从心理是抗拒的。但是后(gong)来(zuo)想(suo)想(po),之前的淘宝,QQ,百度等,也是效仿而来,虽然不像ChatGPT, AlphaGo这样的开创性工作一样令人震撼,但至少也是针对国内使用者做了一些改良。当然,我从心底里佩服能够做出ChatGPT, AlphaGo这样工作的人,也希望国内能有一些这样重量级的工作出现。

话说回来,仔细想想,ModelScope相比Hugging Face做了哪些适合“国情”的改良呢?我能够想到的有下面几点:

  • 首先是中文,虽然说对于专业的开发者,查找和阅读英文文档是一个必备的技能,但是有一个中文的平台作为参考和对比,当然也没什么坏处,另外,在AI这个领域,还有还有大量的初级入门者和非专业的开发者,这样的中文平台对他们而言更加友好;
  • 其次是模型种类,Hugging Face本身是从NLP的Transformer“发家”,一些做CV的朋友甚至都不知道它的存在。而ModelScope除了在NLP,在CV, Audio, Multimodal等领域也有不少的模型,没有对NLP明显的侧重;
  • 再者是机器资源,目前处在推广阶段,每位开发者都可以使用阿里云上免费的CPU/GPU机器进行开发,可以从每个模型主页右上角的Notebook选项中进入,是薅羊毛的不二之选;
  • 最后是网络流畅度,相比Hugging Face,ModelScope在网页浏览、模型下载、数据集下载等方面,显然是更加顺畅的。

ModelScope也存在一些明显的不足:

  • 贡献者欠缺,作为一个社区,当然需要更多开发者的贡献,虽然目前也有一些生态伙伴在上面进行模型贡献,但是大部分的模型还是达摩院自研/搬运的模型,如何能够使开源者在github开源的同时也上线到ModelScope,是一个值得考虑的问题;
  • 模型影响力欠缺,作为一个中文的模型即服务平台,ModelScope上还欠缺有影响力的模型,很多国内的优秀工作也没有上线到这里;
  • 代码一致性保障困难,ModelScope是一个“all in one”的仓库,内部和外部的人均能贡献,同一领域的代码风格统一以及模型结构复用等都是很有挑战的。

垂类模型介绍

我们在ModelScope上贡献的垂类模型(垂直领域的热门检测模型)包括:人体部位(人体、人手、人头)和垂类物体(口罩、安全帽、香烟、手机、交通标识等)检测模型,从某种程度上来说,也算是和Hugging Face的一个差异点(Hugging Face 物体检测相关的模型更多是通用的物体检测模型,没有垂类模型)。垂类模型的入口如下图所示:
垂类模型入口
目前,ModelScope上已经有的垂类模型如下表所示,我们也还在逐渐丰富模型中。

序号模型名称序号模型名称
1实时人体检测模型6实时香烟检测模型
2实时人头检测模型7实时手机检测模型
3实时手部检测模型8实时交通标识检测模型
4实时口罩检测模型9Coming soon
5实时安全帽检测模型

调用方式

1 Demo Service

在每个模型主页的右侧,有demo service的区域,可以上传本地的图片,对模型进行测试,如下图所示:

demo-service

2 Notebook

使用免费的线上机器资源,开启薅羊毛模式,如下图所示。启动对应的实例之后,可以在机器实例中,进行范例代码的运行,也可以搭建自己的服务。
notebook

3 本地使用

如果有本地的机器资源的话,也可以直接pip安装modelscope库,就能够在本地进行使用了。具体可以参考安装教程。

* 二次开发

如果需要对现有的模型进行微调(finetune),可以参考每个模型的<微调代码范例>部分,准备好用于微调的数据之后即可对模型进行微调。

总结

垂类检测系列模型是我们在ModelScope上一个初步的尝试,也是针对与Hugging Face差异化做出的一点探索,欢迎大家适用并提出一些建议。我们会继续丰富和完善上面的模型。

相关文章:

ModelScope 垂类检测系列模型介绍

文章目录ModelScope介绍垂类模型介绍调用方式1 Demo Service2 Notebook3 本地使用* 二次开发总结ModelScope介绍 ModelScope 是阿里达摩院推出的 中文版模型即服务&#xff08;MaaS, Model as a Service&#xff09;共享平台。该平台在2022年的云栖大会上发布&#xff0c;之前…...

Linux | Linux卸载和安装MySQL(Ubuntu版)

最近又来到了Linux学习了&#xff0c;原因是要接触云服务器相关知识&#xff0c; 所以博主整理了一些关于Linux的知识&#xff0c; 欢迎各位朋友点赞收藏&#xff0c;天天开心丫&#xff0c;快乐写代码&#xff01; Linux系列文章请戳 Linux教程专栏 目录 一、卸载MySQL 1…...

【C1】数据类型,常量变量,输入输出,运算符,if/switch/循环,/数组,指针,/结构体,文件操作,/编译预处理,gdb,makefile,线程

文章目录1.数据类型&#xff1a;单双引号&#xff0c;char&#xff08;1B&#xff09;&#xff0c;int/float&#xff08;32位系统&#xff0c;大小一样4B&#xff0c;但存储方式不同&#xff09;&#xff0c;double&#xff08;8B&#xff09;&#xff0c;long double&#xf…...

【深度学习】pytorch的基础操作

import torch import numpy as np # 1.1 根据已有的数据创建张量 def test01(): # 1.1 创建标量 data torch.tensor(10) print(data) # 1.2 使用numpy数组来创建张量 data np.random.randn(2,3) data torch.tensor(data) print(data) # 1.3使用list…...

MWORKS--同元软控MWORKS介绍、安装与使用

MWORKS--同元软控MWORKS介绍、安装与使用1 同元软控介绍1.1 同元软控简介1.2 同元软控发展历史2 MWORKS介绍2.1 MWORKS简介2.2 MWORKS产品描述3 装备数字化3.1 发展3.2 内涵3.3 系统模型发展成为产品的一部分3.4 MWORKS系统模型数据管理3.4 MWORKS为装备数字化提供的套件4 下载…...

Python 解决dilb和face_recognition第三方包安装失败

目录 dilb和face_recognition第三方包安装失败 亲测有效的解决方法&#xff1a;whl安装方式 dilb和face_recognition第三方包安装失败 场景复现&#xff1a;因为需要用到dlibface_recognition&#xff0c;基于OpenCV做一些人脸识别的项目&#xff0c;在Pycharm中进行pip清华…...

Mac系统Mysql的8.0.22版本安装笔记和密码重置修改密码等问题方法

忘记密码官网教程地址&#xff1a;https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html 5.7数据库安装指南参考&#xff1a;https://jingyan.baidu.com/article/fa4125ac0e3c2928ac709204.html 初次安装8.0.22遇到许多坑&#xff0c;密码修改失败&#xff1b…...

驱动 | Linux | NVMe 不完全总结

本文主要参考这里 1’ 2 的解析和 linux 源码 3。 此处推荐一个可以便捷查看 linux 源码的网站 bootlin 4。 更新&#xff1a;2022 / 02 / 11 驱动 | Linux | NVMe 不完全总结NVMe 的前世今生从系统角度看 NVMe 驱动NVMe CommandPCI 总线从架构角度看 NVMe 驱动NVMe 驱动的文件…...

一个测试人员,在现阶段的环境下如何在测试行业发展和自我价值。

前言周末和几个测试圈子里的大佬饭局上聊了一些职场和测试职业发展相关的话题&#xff0c;我将聊天的内容做了整理和阐述。。朋友圈有测试同学对这篇文章提了比较深刻的建议&#xff0c;下面是他的评价和建议&#xff1a;评价&#xff1a;据说是大佬饭桌总结&#xff0c;有两点…...

pwn手记录题2

fastbin_reverse_into_tcache(2.34) 本题所使用的libc版本为2.34&#xff1b;&#xff08;最新版 libc2.34版本已经没有了所谓的hook函数&#xff0c;甚至exit_hook(实际为某个函数指针)也已经不能够使用&#xff1b;能够利用的手法已经很少了&#xff1b; 高版本glibc堆的几…...

CSS ~ 从入门到入坑。

CSS ~ 从入门到入坑。 文章目录CSS ~ 从入门到入坑。what。css 三种实现方式。选择器。id 选择器 > class 选择器 > 标签选择器。标签选择器。类选择器。id 选择器。层次选择器。后代选择器。子选择器。相邻兄弟选择器。通用选择器。结构伪类选择器。属性选择器。字体风格…...

成都哪家机构的Java培训比较好,求一个不坑的?

关于这个问题&#xff0c;相信你会得到很多条答案&#xff0c;以及很多家机构的自荐。既然如此&#xff0c;不如也了解一下老牌IT职业教育机构&#xff1a;有足够丰富的教学经验&#xff0c;丰富的教学产品资源以及成熟的就业保障体系&#xff0c;还有就是承担风险的能力。 很…...

《爆肝整理》保姆级系列教程python接口自动化(十二)--https请求(SSL)(详解)

简介 本来最新的requests库V2.13.0是支持https请求的&#xff0c;但是一般写脚本时候&#xff0c;我们会用抓包工具fiddler&#xff0c;这时候会 报&#xff1a;requests.exceptions.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:590) 小编…...

离线数据仓库

1 数据仓库建模 1.1 建模工具 PowerDesigner/SQLYog/EZDML… 1.2 ODS层 &#xff08;1&#xff09;保持数据原貌不做任何修改&#xff0c;起到备份数据的作用。 &#xff08;2&#xff09;数据采用压缩&#xff0c;减少磁盘存储空间&#xff08;例如&#xff1a;压缩采用LZO&…...

【前端】Vue项目:旅游App-(23)detail:房东介绍、热门评论、预定须知组件

文章目录目标过程与代码房东介绍landlord热门评论HotComment预定须知Book效果总代码修改或添加的文件detail.vuedetail-book.vuedetail-hotComment.vuedetail-landlord.vue参考本项目博客总结&#xff1a;【前端】Vue项目&#xff1a;旅游App-博客总结 目标 根据detail页面获…...

JUC并发编程与源码分析

一、本课程前置知识及要求说明 二、线程基础知识复习 三、CompletableFuture 四、说说Java"锁"事 8锁案例原理解释: 五、LockSupport与线程中断 六、 Java内存模型之JMM 七、volatile与JMM 八、CAS 九、原子操作类之18罗汉增强 十、聊聊ThreadLocal 十一、Java对…...

Spark09: Spark之checkpoint

一、checkpoint概述 checkpoint&#xff0c;是Spark提供的一个比较高级的功能。有时候&#xff0c;我们的Spark任务&#xff0c;比较复杂&#xff0c;从初始化RDD开始&#xff0c;到最后整个任务完成&#xff0c;有比较多的步骤&#xff0c;比如超过10个transformation算子。而…...

《剑指offer》:数组部分

一、数组中重复的数字题目描述&#xff1a;在一个长度为n的数组里的所有数字都在0到n-1的范围内。 数组中某些数字是重复的&#xff0c;但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。 例如&#xff0c;如果输入长度为7的数组{2,3,1…...

基于微信小程序图书馆座位预约管理系统

开发工具&#xff1a;IDEA、微信小程序服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8项目构建&#xff1a;maven数据库&#xff1a;mysql5.7前端技术&#xff1a;vue、uniapp服务端技术&#xff1a;springbootmybatis本系统分微信小程序和管理后台两部分&#xff0c;项目采用…...

剑指 Offer Day1——栈与队列(简单)

本专栏将记录《剑指 Offer》的刷题&#xff0c;传送门&#xff1a;https://leetcode.cn/study-plan/lcof/。 目录剑指 Offer 09. 用两个栈实现队列剑指 Offer 30. 包含min函数的栈剑指 Offer 09. 用两个栈实现队列 原题链接&#xff1a;09. 用两个栈实现队列 class CQueue { pu…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...