数据结构基础--------【二叉树基础】
二叉树基础
二叉树是一种常见的数据结构,由节点组成,每个节点最多有两个子节点,左子节点和右子节点。二叉树可以用来表示许多实际问题,如计算机程序中的表达式、组织结构等。以下是一些二叉树的概念:
- 二叉树的深度:从根节点到叶子节点的最长路径的长度称为二叉树的深度,也称为高度。
- 二叉树的度:一个节点拥有的子节点数量称为该节点的度。二叉树的度为2,即每个节点最多只有两个子节点。
- 二叉树的遍历:二叉树的遍历是指按照一定顺序访问树中的所有节点。常用的遍历方式有前序遍历、中序遍历和后序遍历。
- 二叉查找树:二叉查找树是一种特殊的二叉树,它的左子树中所有节点的值都小于根节点的值,而右子树中所有节点的值都大于根节点的值。
二叉树的定义:
struct TreeNode{int val;TreeNode* left;TreeNode* right;TreeNode(int x):val(x),left(nullptr),right(nullptr) {}}
- 二叉树的基本操作:包括二叉树的创建、遍历、搜索等。
- 二叉查找树的实现及应用:包括二叉查找树的创建、插入、删除、查找等操作。
- 平衡二叉树:为了解决二叉查找树在某些情况下退化为链表的问题,出现了平衡二叉树,如 AVL 树和红黑树等。
- 线段树:线段树是一种特殊的二叉树,用于解决区间查询的问题,如区间最大值、区间和等。
- 树状数组:树状数组也是一种特殊的二叉树,用于解决前缀和、区间和等问题。
1基础介绍
1.基础术语
结点的度:结点的字数个数,比如二叉树的度为2(一个节点最多有2个字数个数)。
树的度:数的所有结点中最大的度数。
叶结点:度为0的结点。
父结点,子结点,兄弟结点(具有同一个父结点的各结点)。
路径和路径的长度:从结点n1到nk,路径所包含的边的个数为路径的长度。
祖先结点,子孙结点。
结点的层次:规定根结点在1层,然后后面的结点层次都依次加一。
树的深度:树中国所有结点的最大层次是这棵树的深度。
二叉树T:一个有穷的结点集合,二叉树的子树有左右顺序之分。
2.二叉树的定义
二叉树T:一个有穷的结点集合,二叉树的子树有左右顺序之分
特殊的二叉树:斜二叉树,满二叉树,完全二叉树(连续结点)
3.二叉树的性质
①个二叉树第i层的最大结点数为: 2^(i-1),(i≥1)
②深度为k的二叉树有最大结点总数为:(2^k)-1, k≥1。(1+2 ^1+2 ^2 …2 ^i )
③0对任何非空二叉树T,若n0表示叶结点的个数、n2是度为2的非叶结点个数,那么两者满足关系n0=n2 +1。
(n0+n1+n2-1) = 0n0+n1+2n2
4.二叉树的遍历
根据遍历结点的顺序,分为前序遍历(NLR),中序遍历(LNR),后续遍历(LRN)。树的遍历复杂度为o(n)。
所以看树的前序数组第一个是根结点,后续遍历数组最后一个是根结点,再把该根结点拿到中序遍历数组中去比对就可以划分左右子树。
4.1 前序遍历
如果二叉树为空,什么都不做,否则:
1)访问根节点;
2)先序遍历左子树
3)先序遍历右子树*/
void PreOrder(BiTree T){if(T!= null){vist(T);//访问根结点NPreOrder(T->lchild);//访问左子树L 递归PreOrder(T->rchild);//访问右子树R}
}

4.2 中序遍历
/*inorder:
如果二叉树为空,什么都不做,否则:
1)中遍历左子树
2)访问根节点;
3)中序遍历右子树*/
void InOrder(BiTree T){if(T!= null){InOrder(T->lchild);//访问左子树L 递归vist(T);//访问根结点NInOrder(T->rchild);//访问右子树R}
}
4.3 后序遍历
/*Postorder:
如果二叉树为空,什么都不做,否则:
1)后序遍历左子树
2)后序遍历右子树
3)访问根节点;*/void PostOrder(BiTree T){if(T!= null){PostOrder(T->lchild);//访问左子树L 递归PostOrder(T->rchild);//访问右子树Rvist(T);//访问根结点N}
}
4.4层序遍历
2.遍历基础
1.DFS(Depth First Search):递归法得到最终的数组(深度优先算法)
其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,如果遇到死路就往回退,回退过程中如果遇到没探索过的支路,就进入该支路继续深入,每个节点只能访问一次。
深度优先搜索应用:先序遍历,中序遍历,后序遍历。二叉树的前序、中序、后序遍历,本质上可以认为是深度优先遍历。是一种回溯思想。
2.BFS(Breadth First Search):迭代法实现层序遍历,每次遍历二叉树的某一层。
它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。一般用队列数据结构来辅助实现算法。
广度优先搜索应用:层序遍历、最短路径、求二叉树的最大高度、由点到面遍历图、拓扑排序
在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。
二叉树分类
满二叉树
如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
如图所示:
这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。
完全二叉树
在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。(连续)
平衡二叉搜索树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
如图:
最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。
二叉搜索树
前面介绍的树,都不用管数值的,而二叉搜索树是要参考数值的,二叉搜索树是一个有序树。
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉排序树
下面这两棵树都是搜索树:
二叉搜索树中序遍历是从小到大的有序数组。
C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。
(文章部分参考代码随想录,链接: link
相关文章:

数据结构基础--------【二叉树基础】
二叉树基础 二叉树是一种常见的数据结构,由节点组成,每个节点最多有两个子节点,左子节点和右子节点。二叉树可以用来表示许多实际问题,如计算机程序中的表达式、组织结构等。以下是一些二叉树的概念: 二叉树的深度&a…...

数据开源 | Magic Data大模型高质量十万轮对话数据集
能够自然的与人类进行聊天交谈,是现今的大语言模型 (LLM) 区别于传统语言模型的重要能力之一,近日OpenAI推出的GPT-4o给我们展示了这样的可能性。 对话于人类来说是与生俱来的,但构建具备对话能力的大模型是一项不小的挑战,收集高…...
webpack之ts打包
tsconfig.json配置 // 是否对js文件进行编译,默认false"allowJs": true,// 是否检查js代码是否符合语法规范,默认false(引入的外部文件有可能语法有问题)"checkJs": true, allowJs和checkJs基本是同时出现,因为有了allowJs 这个检查…...

MATLAB数据统计描述和分析
描述性统计就是搜集、整理、加工和分析统计数据, 使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基础,实用性较强,在数学建模的数据描述部分经常使用。 目录 1.频数表和直方图 2 .统计量 3.统计…...

设计分享—国外后台界面设计赏析
国外后台界面设计将用户体验放在首位,通过直观易懂的布局和高效的交互设计,提升用户操作效率和满意度。 设计不仅追求美观大方,还注重功能的实用性和数据的有效展示,通过图表和图形化手段使数据更加直观易懂。 采用响应式布局&a…...
最小生成树(算法篇)
算法之最小生成树 最小生成树 概念: 最小生成树是一颗连接图G所有顶点的边构成的一颗权最小的树,最小生成树一般是在无向图中寻找。最小生成树共有N-1条边(N为顶点数)。 算法: Prim算法 概念: Prim(普里姆)算法是生成最小生…...

教师管理小程序的设计
管理员账户功能包括:系统首页,个人中心,教师管理,个人认证管理,课程信息管理,课堂记录管理,课堂统计管理,留言板管理 微信端账号功能包括:系统首页,课程信息…...
Selenium 等待
环境: Python 3.8 selenium3.141.0 urllib31.26.19 Chromium 109.0.5405.0 (32 位) # 1 固定等待(time) # 固定待是利用python语言自带的time库中的sleep()方法,固定等待几秒。 # 这种方式会导致这个脚本运…...
安装easy-handeye
一、aruco_ros配置 mkdir -p ~/ros_ws/src cd ~/ros_ws/src git clone -b melodic-devel https://github.com/pal-robotics/aruco_ros.git cd .. catkin_make 二、visp配置(需要联外网下载东西,不然会一直出问题) sudo apt-get install ros-melodic-…...
【面试题】MySQL 索引(第二篇)
1.索引 索引是数据库中的一个核心概念,它对于提高数据库查询效率至关重要。以下是索引的详细概念解析: 一、索引的定义 基本定义:索引是一个排序的列表,其中存储着索引的值和包含这些值的数据所在行的物理地址(或逻…...

4. 小迪安全v2023笔记 javaEE应用
4. 小迪安全v2023笔记 javaEE应用 大体上跟随小迪安全的课程,本意是记录自己的学习历程,不能说是完全原创吧,大家可以关注一下小迪安全。 若有冒犯,麻烦私信移除。 默认有java基础。 文章目录 4. 小迪安全v2023笔记 javaEE应…...

anaconda修改安装的默认环境
📚博客主页:knighthood2001 ✨公众号:认知up吧 (目前正在带领大家一起提升认知,感兴趣可以来围观一下) 🎃知识星球:【认知up吧|成长|副业】介绍 ❤️如遇文章付费,可先看…...

MySQL 9.0 正式发行Innovation创新版已支持向量
从 MySQL 8.1 开始,官方启用了新的版本模型:MySQL 创新版 (Innovation) 和长期支持版 (LTS)。 根据介绍,两者的质量都已达到可用于生产环境级别。区别在于: 如果希望尝试最新的功能和改进,并喜欢与最新技术保持同步&am…...

基于Java+SpringMvc+Vue技术的智慧校园系统设计与实现
博主介绍:硕士研究生,专注于信息化技术领域开发与管理,会使用java、标准c/c等开发语言,以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年,拥有近12年的管理工作经验,拥有较丰富的技术架…...
【蔬菜网元宇宙】—— 探索农业的未来之旅
在数字化时代的浪潮中,技术和创新不断塑造着我们的生活方式。现在,这种变革已经延伸到了农业领域。蔬菜网,一个专注于农产品供应链的领先平台,自豪地宣布我们正式迈入元宇宙的世界——一个全新的虚拟空间,旨在彻底改变…...

淘宝商品历史价格查询(免费)
当前资料来源于网络,禁止用于商用,仅限于学习。 淘宝联盟里面就可以看到历史价格 并且没有加密 淘宝商品历史价格查询可以通过以下步骤进行: 先下载后,登录app注册账户 打开淘宝网站或淘宝手机App。在搜索框中输入你想要查询的商…...

14-47 剑和诗人21 - 2024年如何打造AI创业公司
2024 年,随着人工智能继续快速发展并融入几乎所有行业,创建一家人工智能初创公司将带来巨大的机遇。然而,在吸引资金、招聘人才、开发专有技术以及将产品推向市场方面,人工智能初创公司也面临着相当大的挑战。 让我来…...

WPF界面设计-更改按钮样式 自定义字体图标
一、下载图标文件 iconfont-阿里巴巴矢量图标库 二、xaml界面代码编辑 文件结构  对应的图标代码 Fonts/#iconfont 对应文件位置 <Window.Resources><ControlTemplate TargetType"Button" x:Key"CloseButtonTemplate"…...
开源项目的机遇与挑战
随着全球经济和科技环境的快速变化,开源软件项目的蓬勃发展成为了开发者社区的热门话题。越来越多的开发者和企业选择参与开源项目,以推动技术创新和实现协作共赢。本文将从开源项目的发展趋势、参与开源的经验分享,以及开源项目的挑战三个方…...
Linux实现CPU物理隔离
文章目录 背景使用 taskset 命令使用 cgroups案例 背景 在 Linux 上实现 CPU 的物理隔离(也称为 CPU 隔离或 CPU pinning),可以通过将特定的任务或进程绑定到特定的 CPU 核心来实现。这可以提高系统性能,尤其是在需要实时响应的应…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...