当前位置: 首页 > news >正文

物联网系统中市电电量计量方案(一)

为什么要进行电量计量?

  1. 节约资源:电量计量可以帮助人们控制用电量,从而达到节约资源的目的。在当前严峻的资源供应形势下,节约能源是我们应该重视的问题。
  2. 合理计费:电表可以帮助公共事业单位进行合理计费,以维护公共事业的正常运营。同时,使用者也能根据自己的实际用电量来支付相应的费用。
  3. 监控消耗:通过定期查看电量的使用情况,能够快速发现用电量异常的情况。及时修复故障,避免浪费资源和高额费用。
    本文将主要介绍电量计量中最重要的组成部分——电量计量芯片。
    电量计量芯片的定义
    电量计量芯片是用于测量交流电信号的一类芯片,因最早是使用于电表产品,所以在行业内也俗称电表芯片。它可以统计用电负载的用电量、测量用电负载的功率大小和电流大小,以及市电的电压。市电一般分为单相电和三相电,所以电表芯片有两大类:单相计量芯片和三相计量芯片。
    电量计量芯片的工作原理
    电量计量芯片需要对电信号进行测量,需要分别对电压和电流信号进行采样。以 HLW8110 为例,根据图 1,我们可以对信号采样进行分析。
    在这里插入图片描述
    1、电压信号采样:
    L 线经过 5 个 200K 电阻和 1K 电阻分压后连接到 N,1K 电阻两端的电压输入至 VP PIN,计量芯片通过测量 VP 的电压,就可以采集到 L 线的电信号。
    2、电流信号采样
    对电流信号的采集是通过对 1mR 采样电阻两端的电平进行采样,根据 U = I*R,R 等于 1mR,U 可以通过计量芯片进行测量得到,从而间接采样到 I 的信号。
    得到电压信号和电流信号后,计量芯片 HLW8110 根据算法,就可以计算出有效电压、有效电流和有功功率等电能参数。
    计量芯片属于 ADC 芯片的一种,其主要区别在于,常用的 ADC 芯片是用来测量直流信号的,而计量芯片是用来测量交流信号的。
    被采样的信号通过 IAP、IAN、VP、GND 引脚进入到芯片内部,然后通过 PGA(运放)进入到 ADC 进行采样。ADC 模块的 1.25V 的 VREF 是通过供电电源 VDD 转化而来的,VRFF 的参考地是 GND。
    图 2 HLW8110 内部框图
    在这里插入图片描述
    因为信号采样电路的电平是以N为参考的电平信号,如图 1 所示,电压采样信号的电平VP的电平以及电流采样的信号电平(1mΩ采样电阻两端的电平)都是以N为参考点的电平信号。
    如图 2 所示,运放的VREF是以GND为参考点的参考电压,所以送到计量芯片的信号也必须以GND为参考,才能进行有效的测量。
    我们都知道,测量必须有一个统一的参考,才可能进行有效的测量,所以在设计电路时,我们需要把N和GND连接起来,形成同一个参考。
    我们经常会从安全角度考虑,因为担心强电有危险,在图 1 的电路上,刻意不将N和GND进行短接,如下图所示,其实这是一种错误的接法,没有统一的参考点,如何能够进行正确的测量呢。
    图 3 错误的电路设计图
    在这里插入图片描述
    互感器采样电路
    如下图所示,互感器的设计参考中,电流和电压的采样信号是通过互感器变比后的信号,然后送到 HLW8110 进行采样。
    图 4 互感器采样方式设计参考
    在这里插入图片描述
    那么为何两份设计参考中,图一的 N 和 GND 相连,而图四的 N 和 GND 却不相连呢?这是因为互感器的被测信号已经不再是 L 和 N,而是经过变比后的信号。因此,我们只需确保变比后的信号与 GND 在同一个参考点即可。
    安全性
    从安全性方面来看,互感器采样方式优于电阻采样方式。因为互感器采样可以从源头隔离强电信号。那么,在设计强电产品时,我们应该从哪几个方面加强安全性呢?以下是一些方法:
  4. 外壳绝缘:这是最好的方法,外壳完全绝缘,基本己经保证产品的安全性。
  5. 改量以 N 线做为参考地:在 N 线不能做为参考地的前得下,再使用 L 为参考地,因为 N 对大地的压降是 0V,而 L 对大地的压降是 220V。

电量计量芯片的主要功能
计量芯片的基本功能是测量用电量、功率大小、有效电流和有效电压。一些计量芯片除具备基本测量功能外,还能测量功率因素、市电的线性频率、相角、过零点、视在功率等参数,这类芯片功能比较丰富。下表对不同类型计量芯片的功能进行了分类:
计量芯片的性能和功能因型号而异,具体如下表所示:
在这里插入图片描述
电量计量芯片的选型参数
我们可以按照上述顺序来分解与产品相关的指标。
在这里插入图片描述

  1. 刷新速率:是指产品需要的电量参数数据的更新速度。
  2. 最小测量电流值:产品可以测量的最小电流是多少 mA?
  3. 最小测量功率值:产品可以测量的最小功率值是多少 W?
  4. 准确度:产品允许的精度偏差范围是多少,例如 1%以内、2%以内或 5%以内?
  5. 电量测量范围:产品可以测量的电压范围,例如 90V 到 265V?
  6. 是否需要校准:校准是一个复杂的工序。某些产品由于精度要求不高,例如不需要 1%以内的精度,则可以选择免校准的计量芯片。
  7. 通讯接口:根据 MCU 的资源,选择带有 UART 或 SPI 接口的计量芯片。
  8. 线性频率:如果需要测量市电的线性频率,可以选择带有线性频率测量功能的计量芯片。
  9. 功率因素:如果需要测量市电的功率因素,可以选择带有功率因素测量功能的计量芯片。
    根据以上几条,我们可以大致缩小选型范围,找到合适的计量芯片。

电量计量芯片的应用场景
计量芯片的主要应用场景包括:

  • 智能电网:在智能电网中,计量芯片可以实时监测电力系统的功率参数,如电流、电压、功率因数等,为智能电网的运行和管理提供支持。
  • 工业自动化:在工业生产中,计量芯片可用于监测和控制电力消耗,实现电能的准确计量和分析,为企业节能降耗提供参考依据。
  • 智能家居:随着智能家电的发展,计量芯片可作为基本的“传感器”之一,集成在各类家电中,实现电能的计量、统计和监测等功能。例如,在智能插座中,计量芯片可感知家电的真实状态,检测当前电压、电流是否正常,统计耗电量等。
  • 电力仪表:计量芯片可用于制造电力仪表,如电能表、电压表、电流表等,实现对电力消费的计量和监控。
  • 能源管理系统:在能源管理系统中,计量芯片可用于监测和控制能源的消耗,实现能源的优化利用和管理。
    总之,作为一种测量交流电信号的芯片,计量芯片应用范围极广。随着物联网和智能化的发展,其应用场景将会更加丰富和多样化。

电量计量芯片的厂商
电量计量芯片厂商主要包括国内外的一些知名公司。
国内厂商:

  • 复旦微电子:在电能计量芯片领域拥有多年的研发经验和市场份额,提供多种型号的电能计量芯片产品。
  • 上海贝岭:主要从事电能计量芯片的研发和生产,其产品广泛应用于智能电表等领域。
  • 珠海炬力:专注于电能计量芯片的研发和生产,其产品性能和精度得到了市场的广泛认可。
  • 深圳锐能微合力为:主要生产电能计量芯片,其产品广泛应用于智能电表等领域。
  • 艾创微:是一家专注于集成电路设计的企业,其电能计量芯片产品具有较高的性价比。
  • 钜泉光电:主要从事电能计量芯片的研发和生产,其产品广泛应用于智能电表等领域。
    国际厂商:
  • ADI:是一家全球领先的模拟半导体公司,在电能计量芯片领域拥有较高的技术水平和市场份额。
  • TDK:是一家日本电子元件制造商,在电能计量芯片领域拥有丰富的经验和技术实力。
  • Atmel:是一家以色列半导体公司,提供高性能的电能计量芯片产品。
  • Cirrus Logic:是一家美国半导体公司,在电能计量芯片领域拥有广泛的产品线和市场份额。
    如何了解更多专业知识
    点击这个链接,来奇迹物联(北京)科技有限公司的IOT组件选器库吧。

相关文章:

物联网系统中市电电量计量方案(一)

为什么要进行电量计量? 节约资源:电量计量可以帮助人们控制用电量,从而达到节约资源的目的。在当前严峻的资源供应形势下,节约能源是我们应该重视的问题。合理计费:电表可以帮助公共事业单位进行合理计费,…...

2024年热门无线领夹麦克风哪款好,麦克风品牌排行榜前十名推荐

​在音频领域,无线领夹麦克风不断推陈出新,为我们带来了更出色的声音体验。无论你是主播、自媒体创作者、教师还是商务人士,都能从中找到适合自己的那一款。为了帮助大家轻松挑选到理想的无线领夹麦克风,我特别挑选了几款具有代表…...

IEEE顶刊“放水”?稳居1区Top,发文扩张IF稳长,CCF推荐,审稿友好!

本周投稿推荐 SCI • 能源科学类,1.5-2.0(25天来稿即录) • CCF推荐,4.5-5.0(2天见刊) • 生物医学制药类(2天逢投必中) EI • 各领域沾边均可(2天录用&#xff09…...

发布:PhonePrompter_PC(手机录视频提词器_电脑版)

PhonePrompter_PC(手机录视频提词器_电脑版) 目 录 1. 概述... 2 2. 应用手册... 3 下载地址:百度网盘 请输入提取码 提取码:8wsa 1. 概述 平时工作和生活中需要用手机竖屏或横屏模式录制造工作、科技、历史、生活等方面的一些视…...

shein测试开发会问些啥?

🏆本文收录于《CSDN问答解惑-》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&…...

mysql索引优化

1、不在索引列做任何操作: 函数表达式:select sum(id) from 计算:where id 1; 隐式转换:where id "" 2、尽量全值匹配(在联合索引中,where 后面的条件尽量和索引的所有列匹配…...

Linux文件编程(打开/创建写入读取移动光标)

目录 一、如何在Linux下做开发 1.vi编辑器 2.gcc编译工具 3.常用指令 二、文件打开及创建 三、写入文件 四、读取文件 五、文件“光标”位置 一、如何在Linux下做开发 所谓文件编程,就是对文件进行操作,Linux的文件和Windows系统的文件大差不差…...

集成测试技术栈

前端 浏览器操作:playwright、selenium 后端 testcontainercucumbervitestcypressmsw...

MongoDB - 集合和文档的增删改查操作

文章目录 1. MongoDB 运行命令2. MongoDB CRUD操作1. 新增文档1. 新增单个文档 insertOne2. 批量新增文档 insertMany 2. 查询文档1. 查询所有文档2. 指定相等条件3. 使用查询操作符指定条件4. 指定逻辑操作符 (AND / OR) 3. 更新文档1. 更新操作符语法2. 更新单个文档 updateO…...

【深度学习基础】安装包报错——MAC M3-MAX芯片安装scikit-learn库报错。

目录 一、问题描述二、解决方法 一、问题描述 首先想安装scikit-learn库在mac终端显示顺利安装完成,但是测试的时候报错如下所示: /opt/anaconda3/envs/dtc/bin/python /Users/chenfaquan/PycharmProjects/TimeSeries/data_create.py Traceback (most…...

【chatgpt消费者偏好】是什么驱动了游客持续旅游意愿?推文分享—2024-07-08

今天推文的主题是【chatgpt&消费者意愿】 第一篇:文章主要研究了什么因素驱动旅游者继续使用ChatGPT进行旅行服务,并从人类拟态的角度探讨了旅游者对ChatGPT的感知和使用意图。第二篇:本文探讨了ChatGPT-4在生成针对TripAdvisor上发布的…...

torchplus

https://gitee.com/hj_research/torchplus 一、安装 pip install tplus...

LeetCode之最长回文子串

1.题目链接 5. 最长回文子串 - 力扣(LeetCode)https://leetcode.cn/problems/longest-palindromic-substring/description/ 2.题目解析 对于这道题目我们可以使用动态规划的思路来求解,具体思路是,对于一个长度大于2的子串&…...

Gradle 介绍

Gradle 定义 Gradle 是一个现代化的构建自动化工具,用于管理软件项目的构建过程和依赖关系。它通过一种灵活且强大的 DSL(领域特定语言)语法来描述项目的构建逻辑和任务,可以用于构建几乎任何类型的软件项目,从简单的应…...

短视频矩阵:批量发布的秘密揭秘

在数字化时代,短视频已经成为一种广受欢迎的媒体形式。无论是用于品牌推广、产品营销还是个人创作,短视频都提供了一种直观、生动的方式来吸引观众的注意力。然而,有效地制作、管理和发布短视频对于许多创作者和企业来说是一个挑战。 为此&am…...

基于 Nginx + Spring Boot + Vue + JPA 的网站安全防护指南

引言 在现代互联网时代,确保网站的安全性非常重要。尤其是基于前后端分离架构,更需要特别注意安全防护。接下来,带你了解几种常见的安全攻击及其应对措施。 常见的安全攻击及应对措施 1. 跨站脚本攻击 (XSS) 攻击描述: 跨站脚…...

Perl词法切分器:文本解析的瑞士军刀

📖 Perl词法切分器:文本解析的瑞士军刀 在编程语言中,词法分析是编译过程的第一步,它涉及将输入的源代码分解成一个个的词素或标记。Perl作为一种功能强大的文本处理语言,提供了丰富的工具来进行词法切分。本文将深入…...

基于深度学习LightWeight的人体姿态之行为识别系统源码

一. LightWeight概述 light weight openpose是openpose的简化版本,使用了openpose的大体流程。 Light weight openpose和openpose的区别是: a 前者使用的是Mobilenet V1(到conv5_5),后者使用的是Vgg19(前10…...

Mac窗口辅助管理工具:Magnet for mac激活版

magnet mac版是一款运行在苹果电脑上的一款优秀的窗口大小控制工具,拖拽窗口到屏幕边缘可以自动半屏,全屏或者四分之一屏幕,还可以设定快捷键完成分屏。这款专业的窗口管理工具当您每次将内容从一个应用移动到另一应用时,当您需要…...

DWM 相关实现代码 [自用]

1. DWM 缩略图和模糊隐藏实现半透明 #include <windows.h> #include <dwmapi.h> #include <string> #pragma comment(lib, "dwmapi.lib")// 检查 UWP 窗口是否可见 bool IsUWPWindowVisible(HWND hwnd) {DWORD cloaked 0;DwmGetWindowAttribute(…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...