实变函数精解【3】
文章目录
- 点集
- 求导集
- 闭集
- 参考文献
点集
求导集
- 例1
E = { 1 / n + 1 / m : n , m ∈ N } 1. lim n → ∞ ( 1 / n + 1 / m ) = 1 / m 2. lim n , m → ∞ ( 1 / n + 1 / m ) = 0 3. E ′ = { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E=\{1/n+1/m:n,m \in N\} \\1.\lim_{n \rightarrow \infty}(1/n+1/m)=1/m \\2.\lim_{n,m \rightarrow \infty}(1/n+1/m)=0 \\3.E'=\{0,1,1/2,1/3,....\} E={1/n+1/m:n,m∈N}1.n→∞lim(1/n+1/m)=1/m2.n,m→∞lim(1/n+1/m)=03.E′={0,1,1/2,1/3,....} - 例2
E = { ( m − n ) / ( m + n ) : m , n ∈ N } 1. ( m − n ) / ( m + n ) = 1 − 2 m n + 1 2. lim n → ∞ ( 1 − 2 m n + 1 ) = − 1 3. lim m → ∞ ( 1 − 2 m n + 1 ) = 1 4. lim n , m → ∞ ( 1 − 2 m n + 1 ) = lim n , m → ∞ ( 1 − 1 2 1 m n + 1 ) 1 m n + 1 < 1 = > − 1 < lim n , m → ∞ ( 1 − 1 2 1 m n + 1 ) < 1 E ′ = [ − 1 , 1 ] E=\{(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n):m,n \in N\} \\1.(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n)=1-\frac {2} {\sqrt {m \over n}+1} \\2.\lim_{n \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=-1 \\3.\lim_{m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=1 \\4.\lim_{n,m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=\lim_{n,m \rightarrow \infty }(1- \frac 1 2 \frac {1} {\sqrt {m \over n}+1}) \\\frac {1} {\sqrt {m \over n}+1} < 1=> \\-1 <\lim_{n,m \rightarrow \infty }(1- \frac 1 2 \frac {1} {\sqrt {m \over n}+1})<1 \\E'=[-1,1] E={(m−n)/(m+n):m,n∈N}1.(m−n)/(m+n)=1−nm+122.n→∞lim(1−nm+12)=−13.m→∞lim(1−nm+12)=14.n,m→∞lim(1−nm+12)=n,m→∞lim(1−21nm+11)nm+11<1=>−1<n,m→∞lim(1−21nm+11)<1E′=[−1,1] - 例3
E = { x n = s i n l n n : n ∈ N } E=\{x_n=sinlnn:n \in N\} E={xn=sinlnn:n∈N}

lim n → ∞ l n n = ∞ − 1 ≤ lim n → ∞ s i n l n n ≤ 1 E ′ = [ − 1 , 1 ] \lim_{n \rightarrow \infty}lnn=\infty \\-1\le \lim_{n \rightarrow \infty}sinlnn \le1 \\E'=[-1,1] n→∞limlnn=∞−1≤n→∞limsinlnn≤1E′=[−1,1]
闭集
E ⊂ R n , E ⊃ E ′ = > E 为闭集 E \subset R^n,E \supset E'=>E为闭集 E⊂Rn,E⊃E′=>E为闭集
E ˉ = E ∪ E ′ = > E 为闭包 \bar E=E \cup E'=>E为闭包 Eˉ=E∪E′=>E为闭包
A ⊂ B , A ˉ = B = > A 在 B 中稠密 , A 是 B 的稠密子集 A \subset B,\bar A=B=>A在B中稠密,A是B的稠密子集 A⊂B,Aˉ=B=>A在B中稠密,A是B的稠密子集
下面内容由文心一言生成
在实变函数中,闭集是一个重要的概念,它与开集相对。以下是对实变函数中闭集的详细解释:
定义:
- 在实数集R(或更一般的度量空间、拓扑空间)中,闭集是指包含其所有极限点的集合。
- 换句话说,如果一个集合的所有极限点都属于该集合本身,则它是闭集。
性质:
- 闭集在并集、交集和补集运算下具有良好的性质。
- 任意多个闭集的交集仍然是闭集。
- 有限个闭集的并集也是闭集。
- 闭集的补集是开集(在实数集R中)。
例子:
- 在实数集R中,闭区间[a, b]是一个闭集,因为它包含了其所有边界点a和b,以及区间内的所有点。
- 单点集{x}也是一个闭集,因为它只包含一个点,该点自然是它自己的极限点。
- 空集∅也是一个闭集,因为它不包含任何点,所以也没有极限点需要包含。
与开集的关系:
- 开集和闭集是相对的。一个集合是开集当且仅当它的补集是闭集。
- 在实数集R中,开区间(a, b)是一个开集,而它的补集是闭集,由两个闭区间和两个单点集组成:(-∞, a] ∪ [b, +∞) ∪ {a} ∪ {b}(但通常我们只说它的补集包含(-∞, a]和[b, +∞)这两部分,因为单点集在实数轴上可视为闭集)。
闭包与闭集的关系:
- 任何一个集合S的闭包都是闭集。
- 闭包是包含S的最小闭集,即S的闭包是包含S的所有闭集中的最小者(在包含关系下)。
综上所述,闭集是实变函数中一个基本而重要的概念,它与开集、闭包等概念紧密相关,并在数学分析中发挥着重要作用。
在点集拓扑学中,对于实数集R(或更一般的度量空间、拓扑空间)中的一个点集E,E的闭包通常定义为E与E的所有极限点(或聚点)的并集,记作Ē或E∪E′。这里,E′表示E的导集,即E中所有聚点的集合。聚点的定义是:对于E中的点x,如果存在一个包含x的邻域U,使得U与E的交集(去掉x后)非空,则称x为E的聚点。
性质:闭包是包含原集合的最小闭集。即,对于任意集合E,其闭包Ē是包含E的所有闭集中最小的一个。 例子:考虑实数集R上的开区间(0,1),其闭包是闭区间[0,1],因为0和1是(0,1)的聚点。
参考文献
1.《实变函数解题指南》 周民强
2.《实变函数论》 周民强
相关文章:
实变函数精解【3】
文章目录 点集求导集 闭集参考文献 点集 求导集 例1 E { 1 / n 1 / m : n , m ∈ N } 1. lim n → ∞ ( 1 / n 1 / m ) 1 / m 2. lim n , m → ∞ ( 1 / n 1 / m ) 0 3. E ′ { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E\{1/n1/m:n,m \in N\} \\1.\lim_{n \rightar…...
JVM:SpringBoot TomcatEmbeddedWebappClassLoader
文章目录 一、介绍二、SpringBoot中TomcatEmbeddedWebappClassLoader与LaunchedURLClassLoader的关系 一、介绍 TomcatEmbeddedWebappClassLoader 是 Spring Boot 在其内嵌 Tomcat 容器中使用的一个类加载器(ClassLoader)。在 Spring Boot 应用中&#…...
蜂窝互联网接入:连接世界的无缝体验
通过Wi—Fi,人们可以方便地接入互联网,但无线局域网的覆盖范围通常只有10~100m。当我们携带笔记本电脑在外面四处移动时,并不是在所有地方都能找到可接入互联网的Wi—Fi热点,这时候蜂窝移动通信系统可以为我们提供广域…...
Sprint Boot 2 核心功能(一)
核心功能 1、配置文件 application.properties 同基础入门篇的application.properties用法一样 Spring Boot 2 入门基础 application.yaml(或application.yml) 基本语法 key: value;kv之间有空格大小写敏感使用缩进表示层级关系缩进不允…...
GitLab CI/CD实现项目自动化部署
1 GitLab CI/CD介绍 GitLab CI/CD 是 GitLab 中集成的一套用于软件开发的持续集成(Continuous Integration)、持续交付(Continuous Delivery)和持续部署(Continuous Deployment)工具。这套系统允许开发团队…...
阿里云调整全球布局关停澳洲云服务器,澳洲服务器市场如何选择稳定可靠的云服务?
近日,阿里云宣布将关停澳大利亚地域的数据中心服务,这一决定引发了全球云计算行业的广泛关注。作为阿里云的重要海外市场之一,澳洲的数据中心下架对于当地的企业和个人用户来说无疑是一个不小的挑战。那么,在阿里云调整全球布局的…...
排序(二)——快速排序(QuickSort)
欢迎来到繁星的CSDN,本期内容包括快速排序(QuickSort)的递归版本和非递归版本以及优化。 一、快速排序的来历 快速排序又称Hoare排序,由霍尔 (Sir Charles Antony Richard Hoare) ,一位英国计算机科学家发明。霍尔本人是在发现冒泡排序不够快…...
<数据集>穿越火线cf人物识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:3440张 标注数量(xml文件个数):3440 标注数量(txt文件个数):3440 标注类别数:1 标注类别名称:[person] 使用标注工具:labelImg 标注规则:对…...
a+=1和a=a+1的区别
文章目录 a1 和a a1的区别一、实例代码二、代码解释三、总结 a1 和a a1的区别 一、实例代码 public class Test {public static void main(String[] args) {byte a 10; // a a 1; // a (byte) (a 1);a 1;System.out.println(a);} }上面的对变量a进行加一操作时&a…...
设计模式使用场景实现示例及优缺点(结构型模式——桥接模式)
结构型模式 桥接模式(Bridge Pattern) 桥接模式(Bridge Pattern)是一种结构型设计模式,其主要目的是“将抽象与实现解耦,使得两者可以独立地变化”。这种模式通过提供抽象化和实现化之间的桥接结构&#…...
Spring——自动装配Bean
自动装配是Spring满足bean依赖的一种方式 Spring会在上下文中自动寻找,并自动给bean装配属性 在Spring中有三种装配的方式: 1. 在xml中显示配置 2. 在java中显示配置 3. 隐式的自动装配bean【重要】 测试 记得创建Cat、Dog、People类 public clas…...
云端典藏:iCloud中个人收藏品目录的智能存储方案
云端典藏:iCloud中个人收藏品目录的智能存储方案 在数字化生活不断推进的今天,个人收藏品的管理也趋向于电子化和云端化。iCloud作为苹果公司提供的云服务,为个人收藏品目录的存储和管理提供了一个安全、便捷、跨设备的解决方案。本文将详细…...
安全开发基础篇-数据溢出
上一节我们简单讲解了多语言的数据类型,我们只需要知道这个概念,并且在不同语言有不同的规矩就好。这节讲数据溢出,严格说应该是字符串溢出和整数溢出。 在软件开发中,字符串和整数溢出漏洞是常见的安全问题,它们可能…...
Scanner工具类
扫描控制台输入 1.nextLine nextLine() 方法会扫描输入流中的字符,直到遇到行末尾的换行符 \n,然后将该行的内容作为字符串返回,同时,nextLine() 会将 Scanner 对象的位置移动到下一行的开头,以便下一次读取数据时从下…...
springboot3 集成GraalVM
目录 安装GraalVM 配置环境变量 Pom.xml 配置 build包 测试 安装GraalVM Download GraalVM 版本和JDK需要自己选择 配置环境变量 Jave_home 和 path 设置setting.xml <profile><id>graalvm-ce-dev</id><repositories><repository><id&…...
HumanoidBench——模拟仿人机器人算法有未来
概述 论文地址:https://arxiv.org/pdf/2403.10506 仿人机器人具有类似人类的外形,有望在各种环境和任务中为人类提供支持。然而,昂贵且易碎的硬件是这项研究面临的挑战。因此,本研究开发了使用先进模拟技术的 HumanoidBench。该基…...
实现前端用户密码重置功能(有源码)
引言 密码重置功能是任何Web应用程序中至关重要的一部分。当用户忘记密码时,密码重置功能可以帮助他们安全地重设密码。本文将介绍如何使用HTML、CSS和JavaScript(包括Vue.js)来实现前端的密码重置功能。 1. 项目结构 首先,我们…...
《双流多依赖图神经网络实现精确的癌症生存分析》| 文献速递-基于深度学习的多模态数据分析与生存分析
Title 题目 Dual-stream multi-dependency graph neural network enables precise cancer survival analysis 《双流多依赖图神经网络实现精确的癌症生存分析》 01 文献速递介绍 癌症是全球主要的死亡原因,2020年约有1930万新发癌症病例和近1000万癌症相关死亡…...
【Hive SQL 每日一题】在线峰值人数计算
文章目录 测试数据需求说明需求实现 测试数据 -- 创建 user_activity 表 DROP TABLE IF EXISTS user_activity ; CREATE TABLE user_activity (user_id STRING,activity_start TIMESTAMP,activity_end TIMESTAMP );-- 插入数据 INSERT INTO user_activity VALUES (user1, 2024…...
谷粒商城学习笔记-18-快速开发-配置测试微服务基本CRUD功能
文章目录 一,product模块整合mybatis-plus1,引入依赖2,product启动类指定mapper所在包3,在配置文件配置数据库连接信息4,在配置文件中配置mapper.xml映射文件信息 二,单元测试1,编写测试代码&am…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
JS红宝书笔记 - 3.3 变量
要定义变量,可以使用var操作符,后跟变量名 ES实现变量初始化,因此可以同时定义变量并设置它的值 使用var操作符定义的变量会成为包含它的函数的局部变量。 在函数内定义变量时省略var操作符,可以创建一个全局变量 如果需要定义…...
echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...
