sql业务场景分析思路参考
1、时间可以进行排序,也可以用聚合函数对时间求最大值max(时间)
例如下面的例子:取最晚入职的人,那就是将入职时间倒序排序,然后limit 1
表:

场景:查找最晚入职员工的所有信息
select * from employees order by hire_date desc limit 1
方法二:子查询
select * from employees where hire_date=(select max(hire_date) from employees)
2、 limit可以单独两个参数使用,也可以和offset一起使用
例如:
表:

业务需求: ![]()
代码:limit两个参数单独使用:倒序排序,从第三行开始显示,显示一行数据
select * from employees order by hire_date desc limit 2,1
或者:结合offset使用:
select * from employees order by hire_date desc limit 1 offset 2
3、内连接、左连接、右连接的连接后表的合并情况:
(1)两表内连接的结果是将后面的表拼接在前面的表后面
看例子:两个表:

内连接代码:
select *
from salaries sa join dept_manager de on sa.emp_no=de.emp_no
结果:
(2)右连接
两个表:

上面的表右连接下面的表,代码如下:
select *
from employees e right join dept_emp d on e.emp_no=d.emp_no
结果:

虽然是右连接,但是上面的表在right join的前面,前面的表右连接后面的表,那前面的表就在最后的结果中在前面展示,后面的表在后面展示,但是右连接是保留后面的表的所有行
4、新型思路:找第二大的数据,先把第一大的数据筛选掉,然后再在表格中找第一大也就是原本表格的第二大的数据了
表:

需求:
代码:
select e.emp_no,s.salary,e.last_name,e.first_name
from employees e join salaries s on e.emp_no=s.emp_no
where s.salary=(select max(s2.salary)from salaries s2where s2.salary<(select max(salary) from salaries)
)
题解:

结果:

5、两个表连接,输出在职员工自入职以来的薪水涨幅情况
业务需求:

表:

思路:

用两次join,连接三个表,先连接前两个表,后连接第三个表,然后用当前工资减去入职工资。
结果:

6、MySql在处理group by和非聚合列的关系上有变动:一定的版本或者关系允许,使用group by时有select后面有非聚合列的出现:
官方解释:

官网链接:MySQL :: MySQL 5.7 Reference Manual :: 12.19.3 MySQL Handling of GROUP BY
例子:
表:

业务需求:

代码:
select de.dept_no,dep.dept_name,count(de.dept_no)
from dept_emp de
right join departments dep on de.dept_no=dep.dept_no
join salaries s on de.emp_no=s.emp_no
group by de.dept_no
order by de.dept_no
结果:

解释:

7、字段按照窗口函数倒序排序,窗口内的本字段值相同的按照另外一个字段升序排序
也就是用dense_rank()排序,出现1223的情况,那22这两个字段值是相等的,就按照另外一个字段排序,就是dense_rank只能保证整体按照一个字段排序,但是相同的它不能管是不是按照另外一个字段升序排序,所以要用到order by 进行整体升序排序,然后按另外一个字段升序排序
例如下面这道题:
业务需求:

表:

代码:
select emp_no,salary,dense_rank()over(order by salary desc) r
from salaries
order by r,emp_no asc

红色框里面是按照工资进行降序排序,但是只能进行工资降序排序,他管不到相同序号里面是否是按照员工编号升序排序,所以用绿色框里order by进行排序,因为order by在窗口函数后执行,直接写order by emp_no asc按照编号排序的话,整个排序就会乱掉,不会按照薪资降序排序了,所以要先按照order by r asc升序排序,保证整个表是先按照薪资降序排序的,然后按照编号升序排序。
结果:

8、group by可以根据两个字段进行分组,是去除重复的,而窗口函数不去重复,是计算累积值:
例子:
业务需求:

原表:

代码:
select dpm.dept_no,dpm.dept_name,t.title,count(t.title)
from departments dpm inner join
dept_emp de on dpm.dept_no=de.dept_no inner join
titles t on t.emp_no=de.emp_no
group by dept_no,title
order by dept_no,title asc
结果:
相关文章:
sql业务场景分析思路参考
1、时间可以进行排序,也可以用聚合函数对时间求最大值max(时间) 例如下面的例子:取最晚入职的人,那就是将入职时间倒序排序,然后limit 1 表: 场景:查找最晚入职员工的所有信息 se…...
Django权限系统如何使用?
Django的权限系统是一个强大而灵活的特性,允许你控制不同用户对应用程序中资源的访问。以下是使用Django权限系统的几个基本步骤: 1. 定义模型权限 在你的models.py文件中,你可以为每个模型定义自定义权限。这通过在模型的Meta类里设置perm…...
基于整体学习的大幅面超高分遥感影像桥梁目标检测(含数据集下载地址)
文章摘要 在遥感图像(RSIs)中进行桥梁检测在各种应用中起着至关重要的作用,但与其他对象检测相比,桥梁检测面临独特的挑战。在RSIs中,桥梁在空间尺度和纵横比方面表现出相当大的变化。因此,为了确保桥梁的…...
逻辑回归模型(非回归问题,而是解决二分类问题)
目录: 一、Sigmoid激活函数:二、逻辑回归介绍:三、决策边界四、逻辑回归模型训练过程:1.训练目标:2.梯度下降调整参数: 一、Sigmoid激活函数: Sigmoid函数是构建逻辑回归模型的重要激活函数&am…...
QT的OpenGL渲染窗QOpenGLWidget Class
Qt - QOpenGLWidget (class) (runebook.dev) 一、说明 QOpenGLWidget 类是用于渲染 OpenGL 图形的小部件。从Qt 5.4就开始退出,它对于OpenGL有专门的配合设计。 二、QOpenGLWidget类的成员 2.1 Public类函数 QOpenGLWidget(QWidget *parent nullptr,Qt…...
单元测试和集成测试
软件测试中,单元测试和集成测试是比较常见的方法 单元测试:这是一种专注于最小可测试单元(通常是函数或方法)的测试,用于验证单个组件的行为是否符合预期。它通常由开发者自己完成,可以尽早发现问题&#…...
【JAVA入门】Day15 - 接口
【JAVA入门】Day15 - 接口 文章目录 【JAVA入门】Day15 - 接口一、接口是对“行为”的抽象二、接口的定义和使用三、接口中成员的特点四、接口和类之间的关系五、接口中新增的方法5.1 JDK8开始接口中新增的方法5.1.1 接口中的默认方法5.1.2 接口中的静态方法 5.2 JDK9 开始接口…...
ES6 之 Set 与 Map 数据结构要点总结(一)
Set 数据结构 Set 对象允许你存储任何类型的唯一值,无论是原始值还是对象引用。 特性: 所有值都是唯一的,没有重复。值的顺序是根据添加的顺序确定的。可以使用迭代器遍历 Set。 常用方法: 1. add(value):添加一个新…...
一文学会用RKE部署高可用Kubernetes集群
k8s架构图 RKE简介 RKE全称Rancher Kubernetes Engine,是一个快速的,多功能的 Kubernetes 安装工具。通过RKE,我们可以快速的安装一个高可用K8S集群。RKE 支持多种操作系统,包括 MacOS、Linux 和 Windows。 K8S原生安装需要的先…...
数据加密的常见方法
数据加密是一门历史悠久的技术,它通过加密算法和加密密钥将明文(原始的或未加密的数据)转变为密文,而解密则是通过解密算法和解密密钥将密文恢复为明文。这一技术的核心是密码学,它利用密码技术对信息进行加密,实现信息隐蔽&#…...
天童美语:推荐给孩子的人文历史纪录片
孩子们都有自己的偏好,有的孩子喜欢打游戏,有的孩子喜欢看剧看电影,有的孩子喜欢看书。针对不同的孩子我们要因材施教,所以,广州天童教育给大家推荐一下适合给孩子看的人文历史类的纪录片,让精美的画面&…...
数字人技术如何推动教育事业可持续创新发展?
数字人技术作为一种新兴的教育手段,无论是幼儿园还是大学课堂,数字人都可以融入于各阶段教育中,结合动作捕捉、AI等技术,提高教育资源的利用。 AI智能交互数字人应用: 数字人结合NLP自然语言处理技术以及AI大模型技术…...
FPGA程序设计
在设计FPGA时,多运用模块化的思想取设计模块,将某一功能设计成module。 设计之前要先画一下模块设计图,列出输入输出接口,再进一步设计内部功能。 状态机要画图,确定每个状态和状态之间怎么切换。状态用localparam定…...
彻底开源,免费商用,上海AI实验室把大模型门槛打下来
终于,业内迎来了首个全链条大模型开源体系。 大模型领域,有人探索前沿技术,有人在加速落地,也有人正在推动整个社区进步。 就在近日,AI 社区迎来首个统一的全链条贯穿的大模型开源体系。 虽然社区有LLaMA等影响力较大…...
MTEB评估基准使用指北
文章目录 介绍评估数据 介绍 文本嵌入通常是在单一任务的少量数据集上进行评估,这些数据集未涵盖其可能应用于其他任务的情况,不清楚在语义文本相似性(semantic textual similarity, STS)等任务上的最先进嵌入是否同样适用于聚类或…...
31. 1049. 最后一块石头的重量 II, 494.目标和,474.一和零
class Solution { public:int lastStoneWeightII(vector<int>& stones) {int sum 0;for(int stone : stones) sum stone;int bagSize sum /2;vector<int> dp(bagSize 1, 0);for(int i 0; i < stones.size(); i){ //遍历物品for(int j bagSize; j >…...
PDF 中图表的解析探究
PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来,对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格,这篇文章主要记录了对表格的探究。还有,我个人主要做日本项目&…...
递推(C语言)
文章目录 1.斐波那契数列2.太波那契数列3.二维递推问题4.实战4.1 力扣509 斐波那契数4.2 力扣70 爬楼梯4.3 力扣119 杨辉三角|| 递推最通俗的理解就是数列,递推和数列的关系就好比 算法 和 数据结构 的关系,数列有点 像数据结构中的线性表(可以是顺序表&…...
安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片
安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片 复习了下安卓程序的知识,我们会了解到,安卓程序清楚数据的时候有两个选项 一个是清除全部数据一个是清除缓存。 清除全部数据表示清除应用数据缓存。 对于安卓微信8.0之后而言࿰…...
ES6 Class(类) 总结(九)
ES6 中的 class 是一种面向对象编程的语法糖,提供了一种简洁的方式来定义对象的结构和行为。 JavaScript 语言中,生成实例对象的传统方法是通过构造函数。下面是一个例子。 function Point(x, y) {this.x x;this.y y; } Point.prototype.toString fu…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
鸿蒙HarmonyOS 5军旗小游戏实现指南
1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...
webpack面试题
面试题:webpack介绍和简单使用 一、webpack(模块化打包工具)1. webpack是把项目当作一个整体,通过给定的一个主文件,webpack将从这个主文件开始找到你项目当中的所有依赖文件,使用loaders来处理它们&#x…...
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...
