当前位置: 首页 > news >正文

逻辑回归模型(非回归问题,而是解决二分类问题)

目录:

  • 一、Sigmoid激活函数:
  • 二、逻辑回归介绍:
  • 三、决策边界
  • 四、逻辑回归模型训练过程:
    • 1.训练目标:
    • 2.梯度下降调整参数:

一、Sigmoid激活函数:

Sigmoid函数是构建逻辑回归模型的重要激活函数,如下图所示。
在这里插入图片描述

  • 分类问题目标是将模型的输出结果控制在[0,1]的范围内,当模型输出结果<0.5,默认预测结果为0;当模型输出结果>0.5,默认预测结果为1。
  • 二分类问题的解决思路是:通过构建逻辑回归模型f将二分类问题的输入x映射到Sigmoid函数的输入z上计算输出g,再根据g的范围(是否大于0.5)获得逻辑回归模型的结果(即二分类问题的结果)。
  • 函数的定义域∈R,值域∈[0,1],当输入z<0时,Sogmoid函数输出结果g<0.5,默认为结果是0,构成二分类问题的第一个类别。当输入z>0时,Sogmoid函数输出结果g>0.5,默认为结果是1,构成二分类问题的第二个类别

二、逻辑回归介绍:

逻辑回归用来解决二分类问题。分类问题即模型的输出结果只有有限个(回归问题则是无限个),二分类问题即模型的输出结果只有两个。

在回归问题的经典案例“肿瘤预测案例”中,使用肿瘤尺寸size特征预测该肿瘤是否是恶性肿瘤,输出结果只有两种:是(1)或否(0)。
在这里插入图片描述
这时使用线性回归模型就很难拟合训练集 (线性回归解决的是回归问题,而肿瘤预测案例是一个分类问题,准确说是二分类问题),因此提出了逻辑回归思想。
在这里插入图片描述
逻辑回归模型(解决分类问题):输入特征或特征集X并输出0~1之间的数字,其中拟合曲线通过Sogmoid函数来构造。具体构造流程如下图:
在这里插入图片描述
在这里插入图片描述

  • 第一行解释:逻辑回归模型f的构造同线性回归,通过输入特征集X输出预测结果f,不同点在于f取值范围∈[0,1]
  • 第二三四行解释:之前我们介绍了Sigmoid函数的输出g可以很好的解决二分类问题,因此我们巧妙地使用了Sigmoid函数来构建逻辑回归模型f解决二分类问题,通过将输入特征集X使用线性回归或多项式回归映射到Sigmoid函数的输入z实现Sigmoid函数的输出然后根据Sigmoid函数输出结果是否大于0.5来计算逻辑回归模型的输出f(0或1),得到二分类问题的结果。
  • 第五行解释:上述思想整合一下即可得出逻辑回归模型f,其中模型的输入是特征集X,输出是分类的预测结果0或1。
  • 第六行解释:当逻辑回归模型的输出结果大于等于0.5时,预测值y^为1,用上文的例子来讲就是该肿瘤是恶性肿瘤;当逻辑回归模型的输出结果小于等于0.5时,预测值为0,用上文的例子来讲就是该肿瘤不是恶性肿瘤。

三、决策边界

从上文不难得到,当Sigmoid函数的输入z大于等于0时,即特征集X到z的映射z=wx+b大于等于0时,模型的输出结果是1;当Sigmoid函数的输入z小于0时,即特征集X到z的映射z=wx+b小于0时,模型的输出结果是0。
这是我们可以提出决策边界的概念:使得模型输入X到Sigmoid函数输入z的映射等于0的方程叫做决策边界。

以上述肿瘤预测模型为例,模型输入X到Sigmoid函数输入z的映射为z=wx+b,那么决策边界就是wx+b=0。

下面让我们用图像来展示决策边界的意义:

  • 例1:映射为线性函数
    在这里插入图片描述
    上图展示了训练集中特征x1、x2不同取值时标签的真实值,其中圈代表该样本分类结果为0,叉代表该样本分类结果为1。

    逻辑回归模型如上图,其中模型输入X到Sigmoid函数输入z的映射为z=w1x1+w2x2+b,则决策边界为w1x1+w2x2+b=0。若模型训练结果为w1=1,w2=1,b=-3时,决策边界为x1+x2-3=0,决策边界的函数图像如上图所示,可以看到,如果样本的特征位于决策边界左侧,逻辑回归预测时0,反之为1,这就是决策边界的图像意义。

  • 例2:映射为多项式函数
    在这里插入图片描述
    模型输入X到Sigmoid函数输入z的映射为多项式函数,决策边界如图,可以看到,模型训练完成后,参数值确定了,决策边界也立即就确定了,这时样本的特征相对决策边界的位置决定了该样本的预测结果。

四、逻辑回归模型训练过程:

其实和线性回归训练过程一样,只不过是待训练模型(函数)不同而已。

1.训练目标:

在这里插入图片描述

2.梯度下降调整参数:

在这里插入图片描述

相关文章:

逻辑回归模型(非回归问题,而是解决二分类问题)

目录: 一、Sigmoid激活函数:二、逻辑回归介绍:三、决策边界四、逻辑回归模型训练过程:1.训练目标:2.梯度下降调整参数: 一、Sigmoid激活函数: Sigmoid函数是构建逻辑回归模型的重要激活函数&am…...

QT的OpenGL渲染窗QOpenGLWidget Class

Qt - QOpenGLWidget (class) (runebook.dev) 一、说明 QOpenGLWidget 类是用于渲染 OpenGL 图形的小部件。从Qt 5.4就开始退出,它对于OpenGL有专门的配合设计。 二、QOpenGLWidget类的成员 2.1 Public类函数 QOpenGLWidget(QWidget *parent nullptr,Qt…...

单元测试和集成测试

软件测试中,单元测试和集成测试是比较常见的方法 单元测试:这是一种专注于最小可测试单元(通常是函数或方法)的测试,用于验证单个组件的行为是否符合预期。它通常由开发者自己完成,可以尽早发现问题&#…...

【JAVA入门】Day15 - 接口

【JAVA入门】Day15 - 接口 文章目录 【JAVA入门】Day15 - 接口一、接口是对“行为”的抽象二、接口的定义和使用三、接口中成员的特点四、接口和类之间的关系五、接口中新增的方法5.1 JDK8开始接口中新增的方法5.1.1 接口中的默认方法5.1.2 接口中的静态方法 5.2 JDK9 开始接口…...

ES6 之 Set 与 Map 数据结构要点总结(一)

Set 数据结构 Set 对象允许你存储任何类型的唯一值,无论是原始值还是对象引用。 特性: 所有值都是唯一的,没有重复。值的顺序是根据添加的顺序确定的。可以使用迭代器遍历 Set。 常用方法: 1. add(value):添加一个新…...

一文学会用RKE部署高可用Kubernetes集群

k8s架构图 RKE简介 RKE全称Rancher Kubernetes Engine,是一个快速的,多功能的 Kubernetes 安装工具。通过RKE,我们可以快速的安装一个高可用K8S集群。RKE 支持多种操作系统,包括 MacOS、Linux 和 Windows。 K8S原生安装需要的先…...

数据加密的常见方法

数据加密是一门历史悠久的技术,它通过加密算法和加密密钥将明文(原始的或未加密的数据)转变为密文,而解密则是通过解密算法和解密密钥将密文恢复为明文。这一技术的核心是密码学,它利用密码技术对信息进行加密,实现信息隐蔽&#…...

天童美语:推荐给孩子的人文历史纪录片

孩子们都有自己的偏好,有的孩子喜欢打游戏,有的孩子喜欢看剧看电影,有的孩子喜欢看书。针对不同的孩子我们要因材施教,所以,广州天童教育给大家推荐一下适合给孩子看的人文历史类的纪录片,让精美的画面&…...

数字人技术如何推动教育事业可持续创新发展?

数字人技术作为一种新兴的教育手段,无论是幼儿园还是大学课堂,数字人都可以融入于各阶段教育中,结合动作捕捉、AI等技术,提高教育资源的利用。 AI智能交互数字人应用: 数字人结合NLP自然语言处理技术以及AI大模型技术…...

FPGA程序设计

在设计FPGA时,多运用模块化的思想取设计模块,将某一功能设计成module。 设计之前要先画一下模块设计图,列出输入输出接口,再进一步设计内部功能。 状态机要画图,确定每个状态和状态之间怎么切换。状态用localparam定…...

彻底开源,免费商用,上海AI实验室把大模型门槛打下来

终于,业内迎来了首个全链条大模型开源体系。 大模型领域,有人探索前沿技术,有人在加速落地,也有人正在推动整个社区进步。 就在近日,AI 社区迎来首个统一的全链条贯穿的大模型开源体系。 虽然社区有LLaMA等影响力较大…...

MTEB评估基准使用指北

文章目录 介绍评估数据 介绍 文本嵌入通常是在单一任务的少量数据集上进行评估,这些数据集未涵盖其可能应用于其他任务的情况,不清楚在语义文本相似性(semantic textual similarity, STS)等任务上的最先进嵌入是否同样适用于聚类或…...

31. 1049. 最后一块石头的重量 II, 494.目标和,474.一和零

class Solution { public:int lastStoneWeightII(vector<int>& stones) {int sum 0;for(int stone : stones) sum stone;int bagSize sum /2;vector<int> dp(bagSize 1, 0);for(int i 0; i < stones.size(); i){ //遍历物品for(int j bagSize; j >…...

PDF 中图表的解析探究

PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来&#xff0c;对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格&#xff0c;这篇文章主要记录了对表格的探究。还有&#xff0c;我个人主要做日本项目&…...

递推(C语言)

文章目录 1.斐波那契数列2.太波那契数列3.二维递推问题4.实战4.1 力扣509 斐波那契数4.2 力扣70 爬楼梯4.3 力扣119 杨辉三角|| 递推最通俗的理解就是数列&#xff0c;递推和数列的关系就好比 算法 和 数据结构 的关系&#xff0c;数列有点 像数据结构中的线性表(可以是顺序表&…...

安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片

安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片 复习了下安卓程序的知识&#xff0c;我们会了解到&#xff0c;安卓程序清楚数据的时候有两个选项 一个是清除全部数据一个是清除缓存。 清除全部数据表示清除应用数据缓存。 对于安卓微信8.0之后而言&#xff0…...

ES6 Class(类) 总结(九)

ES6 中的 class 是一种面向对象编程的语法糖&#xff0c;提供了一种简洁的方式来定义对象的结构和行为。 JavaScript 语言中&#xff0c;生成实例对象的传统方法是通过构造函数。下面是一个例子。 function Point(x, y) {this.x x;this.y y; } Point.prototype.toString fu…...

使用 Vue.js 和 Element Plus 实现自动完成搜索功能

使用 Vue.js 和 Element Plus 实现自动完成搜索功能 一、前言1.环境准备2.组件配置3.后端数据请求4.样式5.总结 一、前言 在前端开发中&#xff0c;实现自动完成&#xff08;autocomplete&#xff09;功能可以极大地提升用户体验&#xff0c;特别是在需要用户输入和选择内容的…...

SpringBoot自定义starter

SpringBoot自定义starter 1、SpringBoot之starter机制 1.1、什么是自定义starter ​ SpringBoot中的starter是一种非常重要的机制(自动化配置)&#xff0c;能够抛弃以前繁杂的配置&#xff0c;将其统一集成进starter&#xff0c;应用者只需要在maven中引入starter依赖&#…...

深入探索大语言模型

深入探索大语言模型 引言 大语言模型&#xff08;LLM&#xff09;是现代人工智能领域中最为重要的突破之一。这些模型在自然语言处理&#xff08;NLP&#xff09;任务中展示了惊人的能力&#xff0c;从文本生成到问答系统&#xff0c;无所不包。本文将从多个角度全面介绍大语…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

tauri项目,如何在rust端读取电脑环境变量

如果想在前端通过调用来获取环境变量的值&#xff0c;可以通过标准的依赖&#xff1a; std::env::var(name).ok() 想在前端通过调用来获取&#xff0c;可以写一个command函数&#xff1a; #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...