3款自己电脑就可以运行AI LLM的项目
AnythingLLM、LocalGPT和PrivateGPT都是与大语言模型(LLM)相关的项目,它们允许用户在本地环境中与文档进行交互,但它们在实现方式和特点上存在一些差异。AnythingLLM使用Pinecone和ChromaDB来处理矢量嵌入,并使用OpenAI API来实现其LLM和会话功能。
AnythingLLM
由Mintplex Labs Inc.开发的开源工具,旨在创建个人或企业的私有化本地知识库。它通过结合大模型基于RAG(Retrieval-Augmented Generation)检索增强来实现知识库的检索和生成。AnythingLLM支持多用户使用,并可以设置权限管理,支持多种文档类型,如PDF、TXT、DOCX等,并提供简易的文档管理界面。此外,它还支持多种LLM、嵌入模型和向量数据库,允许用户通过对话或搜索的方式进行问题回答和摘要生成。


文档地址:https://docs.useanything.com/
LocalGPT
一个允许用户在本地设备上使用GPT模型与文档进行聊天的项目。它是受original privateGPT启发的项目,使用Vicuna-7B模型和InstructorEmbeddings代替了LlamaEmbeddings。LocalGPT可以在GPU上运行,但也支持CPU,尽管在CPU上运行可能会比较慢。LocalGPT利用LangChain工具来解析文档并创建嵌入,然后将其存储在本地向量数据库中,使用Chroma向量存储。它使用本地LLM来理解问题并创建答案,从文档中提取答案的上下文。
文档地址:https://github.com/PromtEngineer/localGPT
PrivateGPT
PrivateGPT 是一个结合了高效能语言处理与强大隐私保护的先进语言模型平台。它基于OpenAI的GPT架构,提供了API,支持正常响应和流式响应。
文档地址:https://docs.privategpt.dev/overview/welcome/introduction
PrivateGPT的主要功能包括:
-
隐私保护:PrivateGPT在用户输入提示中删除超过50种类型的人可识别信息(PII),然后将这些信息重新填充到生成的回答中,以确保用户体验的无缝性和安全性。
-
本地化运行:PrivateGPT可以在本地环境中运行,无需上传数据到互联网或与他人分享,从而保护数据隐私。
-
多种应用场景:PrivateGPT可以应用于多种场景,包括在线聊天机器人、自动邮件回复、文章生成、代码生成等。此外,它还可以用于文本生成、问答系统、自动摘要、情感分析等多种自然语言处理任务。
-
智能写作:PrivateGPT可以帮助创作者快速草拟文章框架,生成创意内容。
-
开源项目:PrivateGPT是一个开源项目,用户可以通过Python开发环境构建自己的个性化GPT-4模型,并且无需任何编码或技术知识即可使用。
-
数据控制能力:PrivateGPT具备完整的数据控制能力,使用户能够在本地环境中与强大的语言模型进行交互,确保数据的私密性和安全性。
PrivateGPT不仅提供了一个高效的语言模型平台,还通过隐私保护和本地化运行等特性,满足了现代企业在数据隐私和安全方面的严格要求。
总的来说,AnythingLLM、LocalGPT和PrivateGPT都提供了一种方式,使用户能够在本地环境中与文档进行交互,保护数据隐私,同时利用大语言模型的能力。不同之处在于它们所使用的具体技术栈、支持的硬件、以及用户界面和权限管理等方面。
LocalGPT与PrivateGPT都要求本地运行LLM,对本地机器有一定的要求,AnythingLLM就稍微轻量一些,本地电脑不必运行LLM也能使用LLM带来的益处。
相关文章:
3款自己电脑就可以运行AI LLM的项目
AnythingLLM、LocalGPT和PrivateGPT都是与大语言模型(LLM)相关的项目,它们允许用户在本地环境中与文档进行交互,但它们在实现方式和特点上存在一些差异。AnythingLLM使用Pinecone和ChromaDB来处理矢量嵌入,并使用OpenA…...
各云厂商取消免费一年期SSL证书
目录 第一次削减SSL证书有效期: SSL证书单次签发有效期可能再次削减: 目前市场趋势显现: 各类削减政策意味着什么: 上有政策、下有对策—怎么实现超长SSL证书有效期: 如何申请全自动化部署的SSL证书:…...
自动化测试高级控件交互方法:TouchAction、触屏操作、点按,双击,滑动,手势解锁!
在自动化测试领域中,TouchAction 是一种非常强大的工具,它允许我们模拟用户在设备屏幕上的各种触摸事件。这种模拟不仅限于简单的点击操作,还包括滑动、长按、多点触控等复杂的手势。 点按与双击 点按和双击是触屏设备上最基本的操作之一。…...
leetcode165.解密数字
题目表述: 这道题目和斐波那契数列以及跳台阶问题十分相似。 斐波那契数列:0、1、1、2、3、5, 8、13、21、34 …… leetcode跳台阶问题:1、1、2、3、5, 8、13、21、34....... 这类题目的特点都是第N项的结果等于前两项的和。 但是解密数…...
对为什么react需要时间分片,vue3不需要的浅学习
1、时间分片 时间分片指在让应用在cpu进行大量计算时也能与用户交互,但时间分片只能对大量cpu计算进行优化,无法优化复杂DOM操作,因为要确保用户正在操作的界面是最新。 web卡顿的场景: 1、cpu计算量不大,但dom操作…...
电脑干货分享 · 删除资源管理器导航栏 OneDrive 及 3D 对象
Win10资源管理器的左侧导航栏默认有一个OneDrive的项,但由于微软龟速的原因,OneDrive在国内基本很少有人使用,我们动手给它KO了! 网上有很多这类的教程,但都是要手动修改注册表,对于小白来说,有…...
无人机之穿越机注意事项篇
一、检查设备 每次飞行前都要仔细检查穿越机的每个部件,确保所有功能正常,特别是电池和电机。 二、遵守法律 了解并遵循你所在地区关于无人机的飞行规定,避免非法飞行。 三、评估环境 在飞行前检查周围环境,确保没有障碍物和…...
防御课第一次作业第一天笔记整理
网络安全概述 网络安全(Cyber Security)是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭受到破坏、更改、泄露,系统连续可靠正常地运行,网络服务不中断 中国网络安全市场近年来只增不…...
Git协作
文章目录 Git协作冲突冲突的发生情况解决冲突如何处理冲突 1 分支1.1 什么是Git分支1.2 创建分支 2 切换分支2.1 指向分支2.2 暂存分支切换分支与未提交更改的处理使用 Stash 临时保存更改Stash 的工作原理:场景设定使用 Git Stash 3 远程分支3.1 快进合并快进合并的…...
Three.js机器人与星系动态场景(四):封装Threejs业务组件
实际在写业务的时候不会在每个组件里都写几十行的threejs的初始化工作。我们可以 将通用的threejs的场景、相机、render、轨道控制器等进行统一初始化。同时将非主体的函数提到组件外部,通过import导入进组件。将业务逻辑主体更清晰一些。下面的代码是基于reactthre…...
亚马逊云科技 Amazon Bedrock 构建 AI 应用体验
前言 大模型应用发展迅速,部署一套AI应用的需求也越来越多,从头部署花费时间太长,然而亚马逊科技全托管式生成式 AI 服务 Amazon Bedrock,Amazon Bedrock 简化了从基础模型到生成式AI应用构建的复杂流程,为客户铺设了…...
程序员标准简历模板
链接: https://pan.baidu.com/s/1yMXGSSNba15b9hMXjA39aA?pwdb4ev 提取码: b4ev 3年工作经验简历 链接: https://pan.baidu.com/s/1OO7n1lRL6AkhejxYC9IyDA?pwdfmvv 提取码: fmvv 优秀学员简历 链接: https://pan.baidu.com/s/106Vkw_ulOInI47_5mDySSg?pwduudc 提取码: uu...
物联网设计竞赛_10_Jetson Nano中文转汉语语音
在windows中pyttsx3可以让汉字文本输出中文语音,但是在jetson上只能用英文说话 import pyttsx3def hanyu(test):engine pyttsx3.init()rate engine.getProperty(rate)engine.setProperty(rate,125)engine.say(test)engine.runAndWait() hanyu(你好) #engine.save…...
XML Schema 指示器
XML Schema 指示器 1. 引言 XML Schema 是一种用于定义 XML 文档结构和内容的语言。它提供了一种强大的方式来描述 XML 文档中允许的元素、属性和数据类型。XML Schema 指示器是在 XML Schema 定义中使用的一些特殊元素和属性,它们用于指示 XML 处理器如何解析和验证 XML 文…...
iOS UITableView自带滑动手势和父视图添加滑动手势冲突响应机制探索
场景 我们有时候会遇到这样的一个交互场景:我们有一个UITableView 放在一个弹窗中,这个弹窗可以通过滑动进行展示和消失(跟手滑动的方式),然后这个UITableView放在弹窗中,并且可以滚动,展示一些…...
RAG实践:ES混合搜索BM25+kNN(cosine)
1 缘起 最近在研究与应用混合搜索, 存储介质为ES,ES作为大佬牌数据库, 非常友好地支持关键词检索和向量检索, 当然,支持混合检索(关键词检索向量检索), 是提升LLM响应质量RAG(Retri…...
论文去AIGC痕迹:避免AI写作被检测的技巧
在数字化时代,AI正以其卓越的能力重塑学术写作的面貌。AI论文工具的兴起,为研究者们提供了前所未有的便利,但同时也引发了关于学术诚信和原创性的热烈讨论。当AI辅助写作成为常态,如何确保论文的独创性和个人思想的体现࿰…...
C#使用异步方式调用同步方法的实现方法
使用异步方式调用同步方法,在此我们使用异步编程模型(APM)实现 1、定义异步委托和测试方法 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.Threading.Task…...
【Go系列】 Go语言的入门
为什么要学习Go 从今天起,我们将一同启程探索 Go 语言的奥秘。我会用简单明了的方式,逐一讲解 Go 语言的各个知识点,帮助你从基础做起,一步步深化理解。不论你之前是否有过 Go 语言的接触经验,这个系列文章都将助你收获…...
Dify 与 Xinference 最佳组合 GPU 环境部署全流程
背景介绍 在前一篇文章 RAG 项目对比 之后,确定 Dify 目前最合适的 RAG 框架。本次就尝试在本地 GPU 设备上部署 Dify 服务。 Dify 是将模型的加载独立出去的,因此需要选择合适的模型加载框架。调研一番之后选择了 Xinference,理由如下&…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
java 局域网 rtsp 取流 WebSocket 推送到前端显示 低延迟
众所周知 摄像头取流推流显示前端延迟大 传统方法是服务器取摄像头的rtsp流 然后客户端连服务器 中转多了,延迟一定不小。 假设相机没有专网 公网 1相机自带推流 直接推送到云服务器 然后客户端拉去 2相机只有rtsp ,边缘服务器拉流推送到云服务器 …...
Spring Boot 与 Kafka 的深度集成实践(二)
3. 生产者实现 3.1 生产者配置 在 Spring Boot 项目中,配置 Kafka 生产者主要是配置生产者工厂(ProducerFactory)和 KafkaTemplate 。生产者工厂负责创建 Kafka 生产者实例,而 KafkaTemplate 则是用于发送消息的核心组件&#x…...
