当前位置: 首页 > news >正文

RAG实践:ES混合搜索BM25+kNN(cosine)

1 缘起

最近在研究与应用混合搜索,
存储介质为ES,ES作为大佬牌数据库,
非常友好地支持关键词检索和向量检索,
当然,支持混合检索(关键词检索+向量检索),
是提升LLM响应质量RAG(Retrieval-augmented Generation)的一种技术手段,
那么,如何通过ES实现混合搜索呢?
请看本篇文章。

本系列分为两大部分:实践理论
先讲实践,应对快速开发迭代,可快速上手实践;
再讲理论,应对优化,如归一化。

RAG理论:ES混合搜索BM25+kNN(cosine)以及归一化https://blog.csdn.net/Xin_101/article/details/140237669

在这里插入图片描述

2 实践

2.1 环境准备

2.1.1 部署ES

  • 下载ES镜像:8.12.2版本
docker pull docker.elastic.co/elasticsearch/elasticsearch:8.12.2
  • 下载ik分词器
    https://github.com/infinilabs/analysis-ik/releases
    选择与ES版本一致或者可用的版本,这里选择8.12.2版本分词器。

在这里插入图片描述

  • 添加分词器
    将分词器文件添加到目录:/home/xindaqi/data/es-8-12-2/plugins
    新建分词器文件夹:mkdir -p /home/xindaqi/data/es-8-12-2/plugins/ik_analyzer_8.12.2
    将zip文件复制到文件夹:ik_analyzer_8.12.2

  • 启动ES

docker run -dit \
--restart=always \
--name es01-8-12-2 \
-p 9200:9200 \
-p 9300:9300 \
-v /home/xindaqi/data/es-8-12-2/data:/usr/share/elasticsearch/data \
-v /home/xindaqi/data/es-8-12-2/logs:/usr/share/elasticsearch/logs \
-v /home/xindaqi/data/es-8-12-2/plugins:/usr/share/elasticsearch/plugins \
-e ES_JAVA_OPS="-Xms512m -Xmx1g" \
-e discovery.type="single-node" \
-e ELASTIC_PASSWORD="admin-es" \
-m 1GB \
docker.elastic.co/elasticsearch/elasticsearch:8.12.2

2.1.2 数据准备

实践之前,需要准备数据,包括索引和索引中存储的数据。
为了演示混合搜索,这里创建两种类型的数据:text和dense_vector。

(1)创建索引
curl -X 'PUT' \'http://localhost:9200/vector_5' \-H 'accept: application/json' \-H 'Content-Type: application/json' \-H 'Authorization: Basic ZWxhc3RpYzphZG1pbi1lcw==' \-d '{"settings": {"index": {"number_of_shards": 1,"number_of_replicas": 1,"refresh_interval": "3s"}},"mappings": {"properties": {"dense_values": {"type": "dense_vector","dims": 5,"index": true,"similarity": "cosine"},"id": {"type": "keyword"},"ik_text": {"type": "text","analyzer": "ik_max_word"},"default_text": {"type": "text"},"timestamp": {"type": "long"},"dimensions": {"type": "integer"}}}
}'
(2)新建数据

新建两条数据:

curl -X POST 'http://localhost:9200/vector_5/_doc/1' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic ZWxhc3RpYzphZG1pbi1lcw==' \
--data '{"dense_values": [0.1, 0.2, 0.3, 0.4, 0.5],"id": "1","ik_text": "今天去旅游了","default_text":"今天去旅游了","timestamp": 1715659103373,"dimensions": 5
}'
curl -X POST 'http://localhost:9200/vector_5/_doc/2' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic ZWxhc3RpYzphZG1pbi1lcw==' \
--data '{"dense_values": [0.1, 0.2, 0.3, 0.4, 0.5],"id": "1","ik_text": "好美的太阳","default_text":"好美的太阳","timestamp": 1715659103373,"dimensions": 5
}'

2.2 向量搜索

kNN搜索

ES中向量搜索使用k-Nearest Neighbor(k最近邻分类算法)进行搜索。
输入的请求参数如下:

参数参数描述
knn向量搜索k-Nearest Neighbor
field向量字段名称
query_vector向量值
k召回结果数量
num_candidates召回范围,每个分片选取的数量

请求样例如下:
由样例可知,存储向量数据的字段名称为:dense_values,填充向量值字段为query_vector(为固定属性),召回结果k为3个,每个分片选择100条数据(num_candidates),最大值为:10000。
实际应用过程中,又有向量数据较多(依据维度而定),为节约内存,检索时,在结果中排除,excludes。

curl -X POST 'http://localhost:9200/vector_5/_search' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic ZWxhc3RpYzphZG1pbi1lcw==' \
--data '{"knn": {"field": "dense_values","query_vector": [0.1,0.1,0.1,0.1,0.1],"k": 3,"num_candidates": 100},"_source": {"excludes": ["dense_values"]}
}'

检索结果如下,
由于创建过程中使用的向量数据相同,因此计算的结果也是相同的,
使用

{"took": 2,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": {"value": 2,"relation": "eq"},"max_score": 0.8427159,"hits": [{"_index": "vector_5","_id": "1","_score": 0.8427159,"_source": {"id": "1","ik_text": "今天去旅游了","default_text": "今天去旅游了","timestamp": 1715659103373,"dimensions": 5}},{"_index": "vector_5","_id": "2","_score": 0.8427159,"_source": {"id": "1","ik_text": "好美的太阳","default_text": "好美的太阳","timestamp": 1715659103373,"dimensions": 5}}]}
}

2.2 混合搜索

混合搜索即将搜索拆分成多个部分,每个部分使用不同的权重,实现混合搜索的效果。
ES中使用boost参数来分配不同部分的权重,搜索案例如下。
由案例可知,混合搜索使用关键词+向量搜索,关键词b1与向量总权重b2,其中b1+b2=1,
案例中关键词权重为0.6,向量权重0.4,
关键词搜索将搜索的内容映射到query上,权重映射到boost上,
default_text为实际存储的属性名称。

curl -X POST 'http://localhost:9200/vector_5/_search' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic ZWxhc3RpYzphZG1pbi1lcw==' \
--data '{"query": {"bool": {"must": [{"match": {"default_text": {"query": "好美的太阳","boost": 0.6}}}]}},"knn": {"field": "dense_values","query_vector": [0.1,0.1,0.1,0.1,0.1],"k": 3,"num_candidates": 100,"boost": 0.4},"_source": {"excludes": ["dense_values"]}
}'

3 小结

(1)ES混合搜索:通过boost配置比例,其中,关键词计算使用BM25计算分数,同时加入boost参数;
(2)关键词搜索boost基础比例为2.2,计算过程boost=2.2boost;
(3)向量搜索的最终分数为:final_score=boost
kNN。

计算过程参见文章:RAG理论:ES混合搜索BM25+kNN(cosine)以及归一化
https://blog.csdn.net/Xin_101/article/details/140237669

相关文章:

RAG实践:ES混合搜索BM25+kNN(cosine)

1 缘起 最近在研究与应用混合搜索, 存储介质为ES,ES作为大佬牌数据库, 非常友好地支持关键词检索和向量检索, 当然,支持混合检索(关键词检索向量检索), 是提升LLM响应质量RAG(Retri…...

论文去AIGC痕迹:避免AI写作被检测的技巧

在数字化时代,AI正以其卓越的能力重塑学术写作的面貌。AI论文工具的兴起,为研究者们提供了前所未有的便利,但同时也引发了关于学术诚信和原创性的热烈讨论。当AI辅助写作成为常态,如何确保论文的独创性和个人思想的体现&#xff0…...

C#使用异步方式调用同步方法的实现方法

使用异步方式调用同步方法,在此我们使用异步编程模型(APM)实现 1、定义异步委托和测试方法 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.Threading.Task…...

【Go系列】 Go语言的入门

为什么要学习Go 从今天起,我们将一同启程探索 Go 语言的奥秘。我会用简单明了的方式,逐一讲解 Go 语言的各个知识点,帮助你从基础做起,一步步深化理解。不论你之前是否有过 Go 语言的接触经验,这个系列文章都将助你收获…...

Dify 与 Xinference 最佳组合 GPU 环境部署全流程

背景介绍 在前一篇文章 RAG 项目对比 之后,确定 Dify 目前最合适的 RAG 框架。本次就尝试在本地 GPU 设备上部署 Dify 服务。 Dify 是将模型的加载独立出去的,因此需要选择合适的模型加载框架。调研一番之后选择了 Xinference,理由如下&…...

MICCAI 2024Centerline Boundary Dice Loss for Vascular Segmentation

MICCAI 2024 Centerline Boundary Dice Loss for Vascular Segmentation MICCAI 2024Centerline Boundary Dice Loss for Vascular Segmentation中心线边界Dice损失用于血管分割**摘要**:1. 引言相关工作: 2. 方法预备知识Dice的变化 3 实验3.1 数据集3.2 设置3.3 结…...

golang验证Etherscan上的智能合约

文章目录 golang验证Etherscan上的智能合约为什么要验证智能合约如何使用golang去验证合约获取EtherscanAPI密钥Verify Source Code接口Check Source Code Verification Status接口演示示例及注意事项网络问题无法调用Etherscan接口(最重要的步骤) golan…...

Visual Studio编译优化选项

目录 /O1 和 /O2 /Ox 内联函数 虚函数优化 代码重排 循环优化 链接时间优化 代码分割 数学优化 其他优化选项 在Visual Studio中,编译优化选项是用于提高程序性能的重要工具。编译器提供了多种优化级别和选项,可以根据不同的需要进行选择。 在…...

sql业务场景分析思路参考

1、时间可以进行排序,也可以用聚合函数对时间求最大值max(时间) 例如下面的例子:取最晚入职的人,那就是将入职时间倒序排序,然后limit 1 表: 场景:查找最晚入职员工的所有信息 se…...

Django权限系统如何使用?

Django的权限系统是一个强大而灵活的特性,允许你控制不同用户对应用程序中资源的访问。以下是使用Django权限系统的几个基本步骤: 1. 定义模型权限 在你的models.py文件中,你可以为每个模型定义自定义权限。这通过在模型的Meta类里设置perm…...

基于整体学习的大幅面超高分遥感影像桥梁目标检测(含数据集下载地址)

文章摘要 在遥感图像(RSIs)中进行桥梁检测在各种应用中起着至关重要的作用,但与其他对象检测相比,桥梁检测面临独特的挑战。在RSIs中,桥梁在空间尺度和纵横比方面表现出相当大的变化。因此,为了确保桥梁的…...

逻辑回归模型(非回归问题,而是解决二分类问题)

目录: 一、Sigmoid激活函数:二、逻辑回归介绍:三、决策边界四、逻辑回归模型训练过程:1.训练目标:2.梯度下降调整参数: 一、Sigmoid激活函数: Sigmoid函数是构建逻辑回归模型的重要激活函数&am…...

QT的OpenGL渲染窗QOpenGLWidget Class

Qt - QOpenGLWidget (class) (runebook.dev) 一、说明 QOpenGLWidget 类是用于渲染 OpenGL 图形的小部件。从Qt 5.4就开始退出,它对于OpenGL有专门的配合设计。 二、QOpenGLWidget类的成员 2.1 Public类函数 QOpenGLWidget(QWidget *parent nullptr,Qt…...

单元测试和集成测试

软件测试中,单元测试和集成测试是比较常见的方法 单元测试:这是一种专注于最小可测试单元(通常是函数或方法)的测试,用于验证单个组件的行为是否符合预期。它通常由开发者自己完成,可以尽早发现问题&#…...

【JAVA入门】Day15 - 接口

【JAVA入门】Day15 - 接口 文章目录 【JAVA入门】Day15 - 接口一、接口是对“行为”的抽象二、接口的定义和使用三、接口中成员的特点四、接口和类之间的关系五、接口中新增的方法5.1 JDK8开始接口中新增的方法5.1.1 接口中的默认方法5.1.2 接口中的静态方法 5.2 JDK9 开始接口…...

ES6 之 Set 与 Map 数据结构要点总结(一)

Set 数据结构 Set 对象允许你存储任何类型的唯一值,无论是原始值还是对象引用。 特性: 所有值都是唯一的,没有重复。值的顺序是根据添加的顺序确定的。可以使用迭代器遍历 Set。 常用方法: 1. add(value):添加一个新…...

一文学会用RKE部署高可用Kubernetes集群

k8s架构图 RKE简介 RKE全称Rancher Kubernetes Engine,是一个快速的,多功能的 Kubernetes 安装工具。通过RKE,我们可以快速的安装一个高可用K8S集群。RKE 支持多种操作系统,包括 MacOS、Linux 和 Windows。 K8S原生安装需要的先…...

数据加密的常见方法

数据加密是一门历史悠久的技术,它通过加密算法和加密密钥将明文(原始的或未加密的数据)转变为密文,而解密则是通过解密算法和解密密钥将密文恢复为明文。这一技术的核心是密码学,它利用密码技术对信息进行加密,实现信息隐蔽&#…...

天童美语:推荐给孩子的人文历史纪录片

孩子们都有自己的偏好,有的孩子喜欢打游戏,有的孩子喜欢看剧看电影,有的孩子喜欢看书。针对不同的孩子我们要因材施教,所以,广州天童教育给大家推荐一下适合给孩子看的人文历史类的纪录片,让精美的画面&…...

数字人技术如何推动教育事业可持续创新发展?

数字人技术作为一种新兴的教育手段,无论是幼儿园还是大学课堂,数字人都可以融入于各阶段教育中,结合动作捕捉、AI等技术,提高教育资源的利用。 AI智能交互数字人应用: 数字人结合NLP自然语言处理技术以及AI大模型技术…...

FPGA程序设计

在设计FPGA时,多运用模块化的思想取设计模块,将某一功能设计成module。 设计之前要先画一下模块设计图,列出输入输出接口,再进一步设计内部功能。 状态机要画图,确定每个状态和状态之间怎么切换。状态用localparam定…...

彻底开源,免费商用,上海AI实验室把大模型门槛打下来

终于,业内迎来了首个全链条大模型开源体系。 大模型领域,有人探索前沿技术,有人在加速落地,也有人正在推动整个社区进步。 就在近日,AI 社区迎来首个统一的全链条贯穿的大模型开源体系。 虽然社区有LLaMA等影响力较大…...

MTEB评估基准使用指北

文章目录 介绍评估数据 介绍 文本嵌入通常是在单一任务的少量数据集上进行评估,这些数据集未涵盖其可能应用于其他任务的情况,不清楚在语义文本相似性(semantic textual similarity, STS)等任务上的最先进嵌入是否同样适用于聚类或…...

31. 1049. 最后一块石头的重量 II, 494.目标和,474.一和零

class Solution { public:int lastStoneWeightII(vector<int>& stones) {int sum 0;for(int stone : stones) sum stone;int bagSize sum /2;vector<int> dp(bagSize 1, 0);for(int i 0; i < stones.size(); i){ //遍历物品for(int j bagSize; j >…...

PDF 中图表的解析探究

PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来&#xff0c;对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格&#xff0c;这篇文章主要记录了对表格的探究。还有&#xff0c;我个人主要做日本项目&…...

递推(C语言)

文章目录 1.斐波那契数列2.太波那契数列3.二维递推问题4.实战4.1 力扣509 斐波那契数4.2 力扣70 爬楼梯4.3 力扣119 杨辉三角|| 递推最通俗的理解就是数列&#xff0c;递推和数列的关系就好比 算法 和 数据结构 的关系&#xff0c;数列有点 像数据结构中的线性表(可以是顺序表&…...

安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片

安卓微信8.0之后如何利用缓存找回的三天之前不可见的朋友圈图片 复习了下安卓程序的知识&#xff0c;我们会了解到&#xff0c;安卓程序清楚数据的时候有两个选项 一个是清除全部数据一个是清除缓存。 清除全部数据表示清除应用数据缓存。 对于安卓微信8.0之后而言&#xff0…...

ES6 Class(类) 总结(九)

ES6 中的 class 是一种面向对象编程的语法糖&#xff0c;提供了一种简洁的方式来定义对象的结构和行为。 JavaScript 语言中&#xff0c;生成实例对象的传统方法是通过构造函数。下面是一个例子。 function Point(x, y) {this.x x;this.y y; } Point.prototype.toString fu…...

使用 Vue.js 和 Element Plus 实现自动完成搜索功能

使用 Vue.js 和 Element Plus 实现自动完成搜索功能 一、前言1.环境准备2.组件配置3.后端数据请求4.样式5.总结 一、前言 在前端开发中&#xff0c;实现自动完成&#xff08;autocomplete&#xff09;功能可以极大地提升用户体验&#xff0c;特别是在需要用户输入和选择内容的…...

SpringBoot自定义starter

SpringBoot自定义starter 1、SpringBoot之starter机制 1.1、什么是自定义starter ​ SpringBoot中的starter是一种非常重要的机制(自动化配置)&#xff0c;能够抛弃以前繁杂的配置&#xff0c;将其统一集成进starter&#xff0c;应用者只需要在maven中引入starter依赖&#…...