当前位置: 首页 > news >正文

C#实现最短路径算法

 创建点集

            double r = 200 * 500;double width = 1920;double height = 1080;int col = (int)(r / width);int row = (int)(r / height);List<(double, double)> list1 = new List<(double, double)>();for (int i = 0; i < row; ++i){var y = i * height;if (y < r){var xxx = Math.Sqrt(r * r - y * y);var x = xxx - (xxx % width);list1.Add((x, y));list1.Add((-x, y));list1.Add((x, -y));list1.Add((-x, -y));}}

 点阵像这样一样

最短路径算法,使用LinkedList返回,后续对插入友好

  LinkedList<(double, double)> NearestNeighborTSP(List<(double, double)> points){int n = points.Count;bool[] visited = new bool[n];visited[0] = true;int current = 0;LinkedList<(double, double)> path = new LinkedList<(double, double)>();path.AddLast(points[current]);for (int i = 1; i < n; i++){double minDistance = double.MaxValue;int next = -1;for (int j = 0; j < n; j++){if (!visited[j]){double dist = Distance(points[current], points[j]);if (dist < minDistance){minDistance = dist;next = j;}}}current = next;visited[current] = true;path.AddLast(points[current]);}path.AddLast(points[0]);return path;}double Distance((double, double) point1, (double, double) point2){return Math.Sqrt(Math.Pow(point1.Item1 - point2.Item1, 2) + Math.Pow(point1.Item2 - point2.Item2, 2));}

 路径找完之后(局部展示图,斜线连起来的)

 矫正斜线

            var currentNode = res.First;while (currentNode != null && currentNode.Next != null){var nextNode = currentNode.Next;if (currentNode.Value.Item1 != nextNode.Value.Item1 && currentNode.Value.Item2 != nextNode.Value.Item2){var tempX = Math.Min(currentNode.Value.Item1, nextNode.Value.Item1);var tempY = currentNode.Value.Item1 > nextNode.Value.Item1 ? currentNode.Value.Item2 : nextNode.Value.Item2;res.AddAfter(currentNode, (tempX, tempY));currentNode = nextNode; // Skip the inserted node}elsecurrentNode = currentNode.Next;}

矫正后效果

完整测试代码(demo中所用WPF框架,图表控件为ScottPlot5,nuget里直接搜,装5.0以上版本):

public void test(){double r = 200 * 500;double width = 1920;double height = 1080;int col = (int)(r / width);int row = (int)(r / height);List<(double, double)> list1 = new List<(double, double)>();for (int i = 0; i < row; ++i){var y = i * height;if (y < r){var xxx = Math.Sqrt(r * r - y * y);var x = xxx - (xxx % width);list1.Add((x, y));list1.Add((-x, y));list1.Add((x, -y));list1.Add((-x, -y));}}var wpfPlot = new ScottPlot.WPF.WpfPlot();var xs = list1.Select(x => x.Item1).ToArray();var ys = list1.Select(y => y.Item2).ToArray();var xx = wpfPlot.Plot.Add.Scatter(xs, ys, ScottPlot.Colors.Red).LineWidth = 0;var res = NearestNeighborTSP(list1);var currentNode = res.First;while (currentNode != null && currentNode.Next != null){var nextNode = currentNode.Next;if (currentNode.Value.Item1 != nextNode.Value.Item1 && currentNode.Value.Item2 != nextNode.Value.Item2){var tempX = Math.Min(currentNode.Value.Item1, nextNode.Value.Item1);var tempY = currentNode.Value.Item1 > nextNode.Value.Item1 ? currentNode.Value.Item2 : nextNode.Value.Item2;res.AddAfter(currentNode, (tempX, tempY));currentNode = nextNode; // Skip the inserted node}elsecurrentNode = currentNode.Next;}var xs2 = res.Select(x => x.Item1).ToArray();var ys2 = res.Select(x => x.Item2).ToArray();var yy = wpfPlot.Plot.Add.Scatter(xs2, ys2, ScottPlot.Colors.Blue).LineWidth = 1;grid.Children.Add(wpfPlot);}LinkedList<(double, double)> NearestNeighborTSP(List<(double, double)> points){int n = points.Count;bool[] visited = new bool[n];visited[0] = true;int current = 0;LinkedList<(double, double)> path = new LinkedList<(double, double)>();path.AddLast(points[current]);for (int i = 1; i < n; i++){double minDistance = double.MaxValue;int next = -1;for (int j = 0; j < n; j++){if (!visited[j]){double dist = Distance(points[current], points[j]);if (dist < minDistance){minDistance = dist;next = j;}}}current = next;visited[current] = true;path.AddLast(points[current]);}path.AddLast(points[0]);return path;}double Distance((double, double) point1, (double, double) point2){return Math.Sqrt(Math.Pow(point1.Item1 - point2.Item1, 2) + Math.Pow(point1.Item2 - point2.Item2, 2));}
}

相关文章:

C#实现最短路径算法

创建点集 double r 200 * 500;double width 1920;double height 1080;int col (int)(r / width);int row (int)(r / height);List<(double, double)> list1 new List<(double, double)>();for (int i 0; i < row; i){var y i * height;if (y < r){va…...

Python函数 之 匿名函数

1.概念 匿名函数: 使用 lambda 关键字 定义的表达式&#xff0c;称为匿名函数. 2.语法 lambda 参数, 参数: 一行代码 # 只能实现简单的功能&#xff0c;只能写一行代码 # 匿名函数 一般不直接调用&#xff0c;作为函数的参数使用的 3.代码 4.练习 # 1, 定义匿名函数, 参数…...

深入解析 Mybatis 中 Mapper 接口的实现原理

《深入解析 Mybatis 中 Mapper 接口的实现原理》 在使用 Mybatis 进行数据库操作时&#xff0c;Mapper 接口扮演着重要的角色。它提供了一种简洁、类型安全的方式来与数据库进行交互。那么&#xff0c;Mybatis 是如何实现 Mapper 接口的呢&#xff1f; 一、Mybatis 简介 Myb…...

微信小程序获取用户头像

微信为了安全更改了许多API接口&#xff0c;属实烦人。这次带来的是微信小程序基础库3.5.0还能使用的获取用户头像方法 按键式 <view><view><button open-type"chooseAvatar" bindchooseavatar"onGetUserImage">获取用户头像</butto…...

uniapp小程序连接蓝牙设备

uniapp小程序连接蓝牙设备 一、初始化蓝牙模块二、开始搜索三、连接蓝牙四、监听特征值变化五、调用示例utils.js文件 一、初始化蓝牙模块 这一步是必须的&#xff0c;在开发项目过程中&#xff0c;初始化蓝牙模块之后&#xff0c;紧接着就要开启一些监听的api&#xff0c;供后…...

AI大模型推理过程与优化技术深度剖析

在人工智能的浩瀚星空中&#xff0c;AI大模型以其卓越的性能和广泛的应用前景&#xff0c;成为了推动技术进步的璀璨明星。本文旨在深入探讨AI大模型的推理过程及其背后的优化技术&#xff0c;为理解这一复杂而精妙的技术体系提供一个清晰的视角。 一、AI大模型的推理过程揭秘 …...

Dubbo 核心概念介绍

Dubbo 是一款阿里巴巴开源的高性能 RPC&#xff08;远程过程调用&#xff09;框架&#xff0c;广泛应用于微服务架构中。它主要解决服务治理、负载均衡、故障转移等分布式系统问题。本文将介绍 Dubbo 的核心概念&#xff0c;包括服务提供者&#xff08;Provider&#xff09;、服…...

练习 6.7:⼈们 在为练习 6.1 编写的程序中,再创建两个表⽰⼈的字典,然后将这三个字典都存储在⼀个名为 people 的列表中。

练习 6.7&#xff1a;⼈们 在为练习 6.1 编写的程序中&#xff0c;再创建两个表⽰⼈的字典&#xff0c;然后将这三个字典都存储在⼀个名为 people 的列表中。 要求 遍历这个列表&#xff0c;将其中每个⼈的所有信息都打印出来。 代码 human {shuicc: {first_name: shui,la…...

星环科技知识平台TKH:引领企业构建高效AI基础设施,加速数智化转型新纪元

5月30-31日&#xff0c;2024向星力未来数据技术峰会期间&#xff0c;星环科技正式发布其最新人工智能基础设施产品——Transwarp Knowledge Hub星环知识平台&#xff08;以下简称TKH&#xff09;。该平台旨在为企业打通从人工智能基础设施建设到大数据、人工智能等研发应用的完…...

嵌入式板级支持包(BSP)80道面试题及参考答案(3万字长文)

目录 解释什么是通用输入输出(GPIO)接口及其在BSP中的作用。 描述SPI接口的主要特点和用途。 说明IC总线协议的工作原理。 如何在BSP中配置一个UART接口? USB设备控制器在BSP中的初始化步骤是什么? 以太网接口如何在BSP中被支持? 什么是SDIO,它在哪些场景下会被使…...

如何找回误删的文件?4个常用文件恢复方法!

对于许多用户来说&#xff0c;误删文件是一种常见而令人懊恼的情况。恢复误删文件的重要性在于&#xff0c;它可以帮助用户找回宝贵的数据&#xff0c;避免因数据丢失带来的各种不便和损失。 如何找回不小心删除的文件&#xff1f; 误删数据不知道怎么恢复&#xff0c;会给我…...

在大型企业级应用中,如何优化 XML 数据的存储和检索效率,以满足高并发访问需求?

在大型企业级应用中&#xff0c;优化XML数据的存储和检索效率可采取以下措施&#xff1a; 数据库选择&#xff1a;选择适合XML存储和查询的数据库&#xff0c;如Oracle、MySQL、PostgreSQL等。这些数据库提供了专门的XML存储和查询功能&#xff0c;能够更高效地处理XML数据。 …...

win10 A4000 下使用Xinference来进行大模型的推理测试

创建环境 conda remove --name xinference --all conda create --name xinference python3.10 conda activate xinference 安装&#xff1a; conda install pytorch torchvision torchaudio pytorch-cuda11.8 -c pytorch -c nvidia pip install tiktoken sentence-transformer…...

【9-2:代码规范】

算法级思想 代码规范&#xff08;java&#xff09; 代码规范&#xff08;java&#xff09; 方法参数必须一致&#xff0c;不要出现自动装箱拆箱操作SimpleDateFormat是线程不安全的使用equals注意空指针异常日志 事务场景中如果出现异常被捕时注意回滚不要再finally中使用retu…...

std::filesystem::current_path().generic_string()的bug

这行指令出来会出来大小写的盘符&#xff0c;如D 或者d&#xff0c;似乎随机 #include <iostream> #include <filesystem>namespace fs std::filesystem;bool arePathsSame(const fs::path& p1, const fs::path& p2) {return p1 p2; }int main() {fs::p…...

Python excel知识库批量模糊匹配的3种方法实例(fuzzywuzzy\Gensim)

前言 当然&#xff0c;基于排序的模糊匹配&#xff08;类似于Excel的VLOOKUP函数的模糊匹配模式&#xff09;也属于模糊匹配的范畴&#xff0c;但那种过于简单&#xff0c;不是本文讨论的范畴。 本文主要讨论的是以公司名称或地址为主的字符串的模糊匹配。 使用编辑距离算法进…...

stm32使用单通道规则组ADC

Driver_ADC.c 如果需要关闭adc转换&#xff0c;只需要设置CNT&#xff0c;将其置为0&#xff0c;后面再转换一次就停止了。 #include "Driver_ADC.h"void Driver_ADC1_Init(void) {/* 1. 时钟配置 *//* 1.1 adc时钟 */RCC->APB2ENR | RCC_APB2ENR_ADC1EN;RCC-&g…...

[python][whl]causal-conv1d的python模块在windows上whl文件下载

【模块介绍】 causal-conv1d&#xff0c;即因果一维卷积&#xff08;Causal 1D Convolution&#xff09;&#xff0c;是一种在深度学习特别是时序数据处理中广泛应用的卷积技术。它主要特点在于其“因果性”&#xff0c;即输出的每个元素仅依赖于输入序列中它之前的元素&#…...

介绍 CM3leon,一个更高效、最先进的文本和图像生成模型

近几个月来&#xff0c;随着让机器理解和表达语言的自然语言处理技术以及可根据文本输入生成图像的系统的进步&#xff0c;人们对生成式人工智能模型的兴趣和研究也在加速。今天&#xff0c;我们要展示的是 CM3leon&#xff08;发音类似于 “变色龙”&#xff09;&#xff0c;它…...

HTTPS和HTTP有哪些区别

两者的主要区别在于安全性和数据加密&#xff1a; 加密层&#xff1a;HTTPS 在HTTP 的基础上增加了SSL/TLS 协议作为加密层&#xff0c;确保数据传输的安全性,即使数据被截获&#xff0c;没有相应的密钥也无法解读数据内容。而HTTP 数据传输是明文的&#xff0c;容易受到攻击。…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...