RISC-V异常处理流程概述(2):异常处理机制
RISC-V异常处理流程概述(2):异常处理机制
- 一、异常处理流程和异常委托
- 1.1 异常处理流程
- 1.2 异常委托
- 二、RISC-V异常处理中软件相关内容
- 2.1 异常处理准备工作
- 2.2 异常处理函数
- 2.3 Opensbi系统调用的注册
一、异常处理流程和异常委托
1.1 异常处理流程
发生异常时,首先需要执行 trap 流程:
- 切换到对应的特权模式以处理该 trap。检查 medeleg 寄存器中的相应位,以判断是直接 trap 进 S 模式还是 M 模式。
- 设置 [m/s]status 中的 xPP,xPIE,xIE 等字段。
并设置相关 CSR 的值:
- 将 [m/s]epc 设为导致异常的指令对应的 PC 值。
- 在 [m/s]tval 中存储有关的信息。
- 设置 [m/s]cause寄存器的值。 随后读出 [m/s]tvec 中的值,并根据这个值跳转到 trap 处理程序。
这里不过多分析异常处理过程中硬件寄存器的变化,需要注意的是,在执行异常处理程序时,会进行上下文环境的切换和保存,在执行完异常处理程序后,会通过【m/s】ret指令来退出异常处理程序,接下来会进行恢复异常前程序流的相关操作,最终会跳转到【m/s】pec中保存的地址执行。
1.2 异常委托
在默认的情况下,无论在什么模式下发生异常,都会将控制权交到M模式的异常处理程序,但是Linux系统多数异常都在S模式下进行系统调用。此时,会将M 模式的异常处理程序可以将异常重新导向 S 模式,但这些额外的操作会减慢大多数异常的处理速度。因此,RISC-V 提供了一种异常委托机制。通过该机制可以选择性地将异常交给 S 模式处理,而完全绕过 M 模式。
这种委托机制的实现主要通过:medeleg(Machine Exception Delegation,机器同步异常委托)和 mideleg(Machine Interrupt Delegation,机器中断委托)分别控制将哪些同步异常和中断委托给 S 模式,mret 指令则将 trap 交给其它特权模式处理。
委托给 S 模式的任何异常都可以被 S 模式屏蔽。sie(Supervisor Interrupt Enable,监管者中断使能)和 sip(Supervisor Interrupt Pending,监管者中断待处理)是 S 模式的控制状态寄存器,它们是 mie 和 mip 的子集。它们有着和 M 模式下相同的布局,但在 sie 和 sip 中只有由 mideleg 委托的中断对应的位才能读写,那些没有被委派的中断对应的位始终为 0。
注:发生异常时控制权都不会移交给权限更低的模式。在 M 模式下发生的异常总是在 M 模式下处理。在 S 模式下发生的异常,根据具体的委派设置,可能由 M 模式或 S 模式处理,但永远不会由 U 模式处理。
二、RISC-V异常处理中软件相关内容
2.1 异常处理准备工作
这里需要特殊强调的是异常处理构建的相关内容:
这里会将a4寄存器中的值存储到CSR_MTVEC这个状态寄存器,也就是异常处理程序的的入口;如果遇到异常、中断时,硬件会自动找到_trap_handler
/* Setup trap handler */la a4, _trap_handler
#if __riscv_xlen == 32csrr a5, CSR_MISAsrli a5, a5, ('H' - 'A')andi a5, a5, 0x1beq a5, zero, _skip_trap_handler_rv32_hypla a4, _trap_handler_rv32_hyp
#endifcsrw CSR_MTVEC, a4.section .entry, "ax", %progbits.align 3.globl _trap_handler
_trap_handler:TRAP_SAVE_AND_SETUP_SP_T0TRAP_SAVE_MEPC_MSTATUS 0TRAP_SAVE_GENERAL_REGS_EXCEPT_SP_T0TRAP_CALL_C_ROUTINETRAP_RESTORE_GENERAL_REGS_EXCEPT_SP_T0TRAP_RESTORE_MEPC_MSTATUS 0TRAP_RESTORE_SP_T0mret
建立excption_stack空间,如所示M模式下的异常,则从SP指针开始构建;若不是M模式进入异常,则需要从TP指针开始构建,TP的值为MSCRARCH(这个寄存器会在非M模式下记录M模式下栈帧地址)
.macro TRAP_SAVE_AND_SETUP_SP_T0/* Swap TP and MSCRATCH */csrrw tp, CSR_MSCRATCH, tp/* Save T0 in scratch space */REG_S t0, SBI_SCRATCH_TMP0_OFFSET(tp)/** Set T0 to appropriate exception stack** Came_From_M_Mode = ((MSTATUS.MPP < PRV_M) ? 1 : 0) - 1;* Exception_Stack = TP ^ (Came_From_M_Mode & (SP ^ TP))** Came_From_M_Mode = 0 ==> Exception_Stack = TP* Came_From_M_Mode = -1 ==> Exception_Stack = SP*/csrr t0, CSR_MSTATUSsrl t0, t0, MSTATUS_MPP_SHIFTand t0, t0, PRV_Mslti t0, t0, PRV_Madd t0, t0, -1xor sp, sp, tpand t0, t0, spxor sp, sp, tpxor t0, tp, t0/* Save original SP on exception stack */REG_S sp, (SBI_TRAP_REGS_OFFSET(sp) - SBI_TRAP_REGS_SIZE)(t0)/* Set SP to exception stack and make room for trap registers */add sp, t0, -(SBI_TRAP_REGS_SIZE)/* Restore T0 from scratch space */REG_L t0, SBI_SCRATCH_TMP0_OFFSET(tp)/* Save T0 on stack */REG_S t0, SBI_TRAP_REGS_OFFSET(t0)(sp)/* Swap TP and MSCRATCH */csrrw tp, CSR_MSCRATCH, tp
.endm
TRAP_CALL_C_ROUTINE前面的宏流程用于状态的保存,TRAP_CALL_C_ROUTINE则会调用到C阶段,进入真正的异常处理程序:
.macro TRAP_CALL_C_ROUTINE/* Call C routine */add a0, sp, zerocall sbi_trap_handler
.endm
下面将调用到sbi_trap_handler进行真正的异常处理函数。
2.2 异常处理函数
当Linux中发起ecall调用后,OpenSBI相关服务出发过程如下,主要分为以下几个阶段
- 上一节中讲到,在fw_base.S汇编阶段注册了M mode的trap handler,也就是sbi_trap_handler
- 在sbi_trap_handler中处理各种mcause,首先判断中断原因是否为外部设备中断(timer,ipi),若不是则会根据不同的异常类型比如illegal instructions,Misaligned load & store,S and M mode ecall等等
//lib/sbi_trap.c
/*** Handle trap/interrupt** This function is called by firmware linked to OpenSBI* library for handling trap/interrupt. It expects the* following:* 1. The 'mscratch' CSR is pointing to sbi_scratch of current HART* 2. The 'mcause' CSR is having exception/interrupt cause* 3. The 'mtval' CSR is having additional trap information* 4. The 'mtval2' CSR is having additional trap information* 5. The 'mtinst' CSR is having decoded trap instruction* 6. Stack pointer (SP) is setup for current HART* 7. Interrupts are disabled in MSTATUS CSR** @param regs pointer to register state*/
void sbi_trap_handler(struct sbi_trap_regs *regs)
{int rc = SBI_ENOTSUPP;const char *msg = "trap handler failed";ulong mcause = csr_read(CSR_MCAUSE);ulong mtval = csr_read(CSR_MTVAL), mtval2 = 0, mtinst = 0;struct sbi_trap_info trap;if (misa_extension('H')) {mtval2 = csr_read(CSR_MTVAL2);mtinst = csr_read(CSR_MTINST);}if (mcause & (1UL << (__riscv_xlen - 1))) {mcause &= ~(1UL << (__riscv_xlen - 1));switch (mcause) {case IRQ_M_TIMER:sbi_timer_process();break;case IRQ_M_SOFT:sbi_ipi_process();break;default:msg = "unhandled external interrupt";goto trap_error;};return;}switch (mcause) {case CAUSE_ILLEGAL_INSTRUCTION:rc = sbi_illegal_insn_handler(mtval, regs);msg = "illegal instruction handler failed";break;case CAUSE_MISALIGNED_LOAD:rc = sbi_misaligned_load_handler(mtval, mtval2, mtinst, regs)
相关文章:

RISC-V异常处理流程概述(2):异常处理机制
RISC-V异常处理流程概述(2):异常处理机制 一、异常处理流程和异常委托1.1 异常处理流程1.2 异常委托二、RISC-V异常处理中软件相关内容2.1 异常处理准备工作2.2 异常处理函数2.3 Opensbi系统调用的注册一、异常处理流程和异常委托 1.1 异常处理流程 发生异常时,首先需要执…...
Unity3D中如何降低游戏的Drawcall详解
在Unity3D游戏开发中,Drawcall是一个至关重要的性能指标,它指的是CPU通知GPU绘制一个物体的命令次数。过多的Drawcall会导致游戏性能下降,因此优化Drawcall的数量是提高游戏性能的关键。本文将详细介绍Unity3D中降低Drawcall的几种主要方法&a…...

小程序-设置环境变量
在实际开发中,不同的开发环境,调用的接口地址是不一样的 例如:开发环境需要调用开发版的接口地址,生产环境需要正式版的接口地址 这时候,我们就可以使用小程序提供了 wx.getAccountInfoSync() 接口,用来获取…...

【RabbitMQ】一文详解消息可靠性
目录: 1.前言 2.生产者 3.数据持久化 4.消费者 5.死信队列 1.前言 RabbitMQ 是一款高性能、高可靠性的消息中间件,广泛应用于分布式系统中。它允许系统中的各个模块进行异步通信,提供了高度的灵活性和可伸缩性。然而,这种通…...
RuntimeError: Unexpected error from cudaGetDeviceCount
RuntimeError: Unexpected error from cudaGetDeviceCount 0. 引言1. 临时解决方法 0. 引言 使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下: (VllmWorkerProcess pid30692) WARNING 07-12 08:16:22 utils.py:562] U…...
uboot学习:(一)基础认知
目录 uboot是一个裸机程序(bootloader) 作用 要运行linux系统时,如何从外置的flash拷贝到DDR中,才能启动 uboot使用步骤 步骤1中的命令例子 注意 uboot源码获取方法 uboot是一个裸机程序(bootloader)…...
每天一个数据分析题(四百二十六)- 总体方差
为了比较两个总体方差,我们通常检验两个总体的() A. 方差差 B. 方差比 C. 方差乘积 D. 方差和 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python,SQL,统计学&a…...

【C++】设计一套基于C++与C#的视频播放软件
在开发一款集视频播放与丰富交互功能于一体的软件时,结合C的高性能与C#在界面开发上的便捷性,是一个高效且实用的选择。以下,我们将概述这样一个系统的架构设计、关键技术点以及各功能模块的详细实现思路。 一、系统架构设计 1. 架构概览 …...
数学建模中的辅助变量、中间变量、指示变量
在数学建模中,除了决策变量外,还有一些其他类型的变量,如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释: 1. 决策变量(Decision Variables) 定义&am…...
python的seek()和tell()
seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值,表示相对于起始位置的偏移量。如果是正数,表示向文件末尾方向移动;如果是负…...

Go泛型详解
引子 如果我们要写一个函数分别比较2个整数和浮点数的大小,我们就要写2个函数。如下: func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数,除了数据类…...

【每日一练】python之sum()求和函数实例讲解
在Python中, sum()是一个内置函数,用于计算可迭代对象(如列表、元组等)中所有元素的总和。如下实例: """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数,统计作用 "&…...

打造智慧校园德育管理,提升学生操行基础分
智慧校园的德育管理系统内嵌的操行基础分功能,是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标,如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等,为每个学…...

自定义函数---随机数系列函数
大家有没有发现平常在写随机数的时候,需要引入很多的头文件,然后还需要用一些复杂的函数,大家可能不太习惯,于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令,防止头文件被重复包含…...

一文了解5G新通话技术演进与业务模型
5G新通话简介 5G新通话,也被称为VoNR,是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道(Data Channel),承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...
el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法
在change事件中如果对el-input-number绑定的数据进行更改,会出现change事件失效的问题 试过:this.$set()及赋值等方法,都无法解决 解决方法:用$nextTick函数对绑定值进行更改( this.$nextTick(() > { this.绑定…...

将vue项目整合到springboot项目中并在阿里云上运行
第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...
AC修炼计划(AtCoder Regular Contest 179)A~C
A - Partition A题传送门 这道题不难发现,如果数字最终的和大于等于K,我们可以把这个原数列从大到小排序,得到最终答案。 如果和小于K,则从小到大排序,同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...

开发编码规范笔记
前言 (1)该博客仅用于个人笔记 格式转换 (1)查看是 LF 行尾还是CRLF 行尾。 # 单个文件,\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件,$ 表示 LF 行尾。^M$ 表示 CRLF …...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...

解析“道作为序位生成器”的核心原理
解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制,重点解析"道作为序位生成器"的核心原理与实现框架: 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法
用神经网络读懂你的“心情”:揭秘情绪识别系统背后的AI魔法 大家好,我是Echo_Wish。最近刷短视频、看直播,有没有发现,越来越多的应用都开始“懂你”了——它们能感知你的情绪,推荐更合适的内容,甚至帮客服识别用户情绪,提升服务体验。这背后,神经网络在悄悄发力,撑起…...