RuntimeError: Unexpected error from cudaGetDeviceCount
RuntimeError: Unexpected error from cudaGetDeviceCount
- 0. 引言
- 1. 临时解决方法
0. 引言
使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下:
(VllmWorkerProcess pid=30692) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30694) WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
WARNING 07-12 08:16:22 utils.py:562] Using 'pin_memory=False' as WSL is detected. This may slow down the performance.
(VllmWorkerProcess pid=30693) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30693) Traceback (most recent call last):
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30693) self.run()
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30693) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30693) worker = worker_factory()
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30693) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30693) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30693) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30693) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30693) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30693) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30693) prop = get_device_properties(device)
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30693) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30693) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30693) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30693) torch._C._cuda_init()
(VllmWorkerProcess pid=30693) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30692) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30692) Traceback (most recent call last):
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30692) self.run()
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30692) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30692) worker = worker_factory()
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30692) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30692) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30692) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30692) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30692) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30692) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30692) prop = get_device_properties(device)
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30692) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30692) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30692) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30692) torch._C._cuda_init()
(VllmWorkerProcess pid=30692) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
(VllmWorkerProcess pid=30694) Process VllmWorkerProcess:
(VllmWorkerProcess pid=30694) Traceback (most recent call last):
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
(VllmWorkerProcess pid=30694) self.run()
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/multiprocessing/process.py", line 108, in run
(VllmWorkerProcess pid=30694) self._target(*self._args, **self._kwargs)
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/multiproc_worker_utils.py", line 210, in _run_worker_process
(VllmWorkerProcess pid=30694) worker = worker_factory()
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 68, in _create_worker
(VllmWorkerProcess pid=30694) wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker_base.py", line 334, in init_worker
(VllmWorkerProcess pid=30694) self.worker = worker_class(*args, **kwargs)
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/worker.py", line 85, in __init__
(VllmWorkerProcess pid=30694) self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 217, in __init__
(VllmWorkerProcess pid=30694) self.attn_backend = get_attn_backend(
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 45, in get_attn_backend
(VllmWorkerProcess pid=30694) backend = which_attn_to_use(num_heads, head_size, num_kv_heads,
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py", line 151, in which_attn_to_use
(VllmWorkerProcess pid=30694) if torch.cuda.get_device_capability()[0] < 8:
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 430, in get_device_capability
(VllmWorkerProcess pid=30694) prop = get_device_properties(device)
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 444, in get_device_properties
(VllmWorkerProcess pid=30694) _lazy_init() # will define _get_device_properties
(VllmWorkerProcess pid=30694) ^^^^^^^^^^^^
(VllmWorkerProcess pid=30694) File "/root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/torch/cuda/__init__.py", line 293, in _lazy_init
(VllmWorkerProcess pid=30694) torch._C._cuda_init()
(VllmWorkerProcess pid=30694) RuntimeError: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory
ERROR 07-12 08:16:26 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 30693 died, exit code: 1
INFO 07-12 08:16:26 multiproc_worker_utils.py:123] Killing local vLLM worker processes
1. 临时解决方法
vi /root/miniconda3/envs/vllm2025/lib/python3.10/site-packages/vllm/attention/selector.py--- 设置成固定的 `backend = _Backend.XFORMERS`。# backend = which_attn_to_use(num_heads, head_size, num_kv_heads,# sliding_window, dtype, kv_cache_dtype,# block_size)backend = _Backend.XFORMERS
---
完结!
相关文章:
RuntimeError: Unexpected error from cudaGetDeviceCount
RuntimeError: Unexpected error from cudaGetDeviceCount 0. 引言1. 临时解决方法 0. 引言 使用 vllm-0.4.2 部署时,多卡正常运行。升级到 vllm-0.5.1 时,报错如下: (VllmWorkerProcess pid30692) WARNING 07-12 08:16:22 utils.py:562] U…...
uboot学习:(一)基础认知
目录 uboot是一个裸机程序(bootloader) 作用 要运行linux系统时,如何从外置的flash拷贝到DDR中,才能启动 uboot使用步骤 步骤1中的命令例子 注意 uboot源码获取方法 uboot是一个裸机程序(bootloader)…...
每天一个数据分析题(四百二十六)- 总体方差
为了比较两个总体方差,我们通常检验两个总体的() A. 方差差 B. 方差比 C. 方差乘积 D. 方差和 数据分析认证考试介绍:点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python,SQL,统计学&a…...
【C++】设计一套基于C++与C#的视频播放软件
在开发一款集视频播放与丰富交互功能于一体的软件时,结合C的高性能与C#在界面开发上的便捷性,是一个高效且实用的选择。以下,我们将概述这样一个系统的架构设计、关键技术点以及各功能模块的详细实现思路。 一、系统架构设计 1. 架构概览 …...
数学建模中的辅助变量、中间变量、指示变量
在数学建模中,除了决策变量外,还有一些其他类型的变量,如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释: 1. 决策变量(Decision Variables) 定义&am…...
python的seek()和tell()
seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值,表示相对于起始位置的偏移量。如果是正数,表示向文件末尾方向移动;如果是负…...
Go泛型详解
引子 如果我们要写一个函数分别比较2个整数和浮点数的大小,我们就要写2个函数。如下: func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数,除了数据类…...
【每日一练】python之sum()求和函数实例讲解
在Python中, sum()是一个内置函数,用于计算可迭代对象(如列表、元组等)中所有元素的总和。如下实例: """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数,统计作用 "&…...
打造智慧校园德育管理,提升学生操行基础分
智慧校园的德育管理系统内嵌的操行基础分功能,是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标,如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等,为每个学…...
自定义函数---随机数系列函数
大家有没有发现平常在写随机数的时候,需要引入很多的头文件,然后还需要用一些复杂的函数,大家可能不太习惯,于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令,防止头文件被重复包含…...
一文了解5G新通话技术演进与业务模型
5G新通话简介 5G新通话,也被称为VoNR,是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道(Data Channel),承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器
视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...
el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法
在change事件中如果对el-input-number绑定的数据进行更改,会出现change事件失效的问题 试过:this.$set()及赋值等方法,都无法解决 解决方法:用$nextTick函数对绑定值进行更改( this.$nextTick(() > { this.绑定…...
将vue项目整合到springboot项目中并在阿里云上运行
第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...
AC修炼计划(AtCoder Regular Contest 179)A~C
A - Partition A题传送门 这道题不难发现,如果数字最终的和大于等于K,我们可以把这个原数列从大到小排序,得到最终答案。 如果和小于K,则从小到大排序,同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...
开发编码规范笔记
前言 (1)该博客仅用于个人笔记 格式转换 (1)查看是 LF 行尾还是CRLF 行尾。 # 单个文件,\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件,$ 表示 LF 行尾。^M$ 表示 CRLF …...
spring boot easyexcel
1.pom <!-- easyexcel 依赖 --><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency><dependency><groupId>org.projectlombok</group…...
Docker 部署 ShardingSphere-Proxy 数据库中间件
文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldatabase-readwrite-splitting.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为…...
Qt常用快捷键
Qt中的常用快捷键 F1查看帮助F2快速到变量声明 从cpp→hShift F2 函数的声明和定义之间快速切换 ;选中函数名 ,从h→cppF4在 cpp 和 h 文件切换 Shift F4在cpp/h文件与 界面文件中切换Ctrl /注释当前行 或者选中的区域Ctrl I自动缩进当前…...
关于RiboSeq分析流程的总结
最近关注了一下RiboSeq的分析方法,方法挺多的,但是无论哪种软件,都会存在或多或少的问题,一点问题不存在的软件不存在,问题的原因出在,1.有的脚本是用python2编写的,目前python2已经不能用了 2.…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
【设计模式】1.简单工厂、工厂、抽象工厂模式
every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 以下是 简单工厂模式、工厂方法模式 和 抽象工厂模式 的 Python 实现与对比,结合代码示例和实际应用场景说明: 1. 简单工厂模式&a…...
如何用 HTML 展示计算机代码
原文:如何用 HTML 展示计算机代码 | w3cschool笔记 (请勿将文章标记为付费!!!!) 在编程学习和文档编写过程中,清晰地展示代码是一项关键技能。HTML 作为网页开发的基础语言&#x…...
