【Python学习笔记】Optuna + Transformer B站视频实践
【Python学习笔记】Optuna + Transformer 实践
背景前摇(省流可不看):
之前以泰坦尼克号数据集为案例,学习了Optuna的基本操作,为了进一步巩固知识和便于包装简历,决定找个唬人一点的项目练练手。
————————————————————————————————————————————
B站大学学习视频:【手把手带你实战HuggingFace Transformers-番外技能篇】基于Optuna的transformers模型自动调参
https://www.bilibili.com/list/watchlater?oid=875968820&bvid=BV1NN4y1S7i8&spm_id_from=333.1007.top_right_bar_window_view_later.content.click
传送门
————————————————————————————————————————————
正文:
划重点:权重参数是模型(通过梯度下降等)自己一点点学到的,超参数是需要人为设置的。
按我的理解打个粗略的比方:权重参数表示模型“学什么”,超参数表示模型“怎么学”。比如说一个学生要上学,如果父母有车有时间送,那就坐家里的车去学校,如果父母没车或者没时间,他就走路或者骑自行车、坐公交等去学校。他怎么去学校很大程度上他父母会决定,当然要是他父母没说话,他自己也会有个默认选择,这就是超参数。
至于上学路上他花多久时间,走快点走慢点,要不要顺路买个早点或者等等同班同学,还是一大早直奔学校沉迷学习,这就是他自己决定看啥更重要了,即权重参数。(该例子很不贴切严谨,仅代表个人理解,请勿较真)

“一个最优目标的定义”,之前泰坦尼克号那个案例,最优目标就是希望均方根差(root mean square error,缩写RMSE)最小。
————————————————————————————————
原作者的示例代码库下载地址:https://github.com/zyds/transformers-code
添加链接描述

(看起来好NB好系统好全面的教程!在下技术小白先膜拜一波,感谢大佬的无私分享)
找到这个名为hyp_tune_optuna.ipynb的代码:

————————————————————————————————
我一开始以为这个代码需要一个特别麻烦的库PyTorch(后面发现并不用……直接装需要的俩库就完事了……),还是把教程放在这里吧。
第一次安装的话很费劲,大家想试试的千万做好耗时间的心理准备:
https://cloud.tencent.com/developer/article/2154882
腾讯云yyds

————————————————————————————————————————————
pip install 一下 transformer 和 dataset 库。

检查一下,原视频UP的Github,发现适配的Transformer是4.36.2的,先把这个搞定:
(这我习惯不好,应该在开始跑项目装环境之前就先看看示例用的什么版本,免得后来费事卸载重装,大家不要学我。)

————————————————————————————————————————————
如果安装完这俩库,一运行还报一个huggingface相关的错,别担心,按照提示,输入命令‘pip install transformers -U’执行即可搞定。

前面几个Step主要在装库,载入数据集,创建模型等,正常运行即可。
到Step4这里开始莫名其妙地扯拐:

RuntimeError: Failed to import transformers.models.bert.configuration_bert because of the following error (look up to see its traceback):
Failed to import transformers.onnx.config because of the following error (look up to see its traceback):
DLL load failed while importing _imaging: 找不到指定的模块。
不要怕,遇到这种差东西的报错一般都是环境问题,复制报错让Kimi看看:

基本上看来是环境没配对造成的了,十有八九这个锅还是Python背。————————————————————————————————————————————
后再运行发现他的报错变简单了:DLL load failed while importing _imaging: 找不到指定的模块。

再针对这个报错搜索,发现是Pillow版本太低导致的:
发现输出还有bug,再搜:
Map: 0%| | 0/6988 [00:00<?, ? examples/s]
Unexpected exception formatting exception. Falling back to standard exception
Traceback (most recent call last):
File “c:\Users\admin\anaconda3\envs\optuna-example\lib\site-packages\PIL\Image.py”, line 108, in
raise ImportError(msg)
ImportError: The _imaging extension was built for another version of Pillow or PIL:
Core version: 10.4.0
Pillow version: 9.3.0
发现需要10.4.0版本的Pillow,那就卸载重新再装这个版本,中间搜到有人的教程说要多Uninstall几次。
如果还是没效果的话把命令行和VSCode都关了重新打开运行试试,我就是VSCode这块反复装都报错,这块死活都过不去,一气之下全关了,换成Jupyter Notebook重新开始运行,结果一下子就好了,并且以后换成VSCode打开也没问题了。

后面遇到evaluate等库没有的话也不要怕,阅读报错提示+网上搜索,跟着教程pip install就是。人工智能这块就是装环境比较复杂,新手适应起来有一段时间,玩熟了就是小菜一碟了。
————————————————————————————————————————————
把环境问题解决以后就可以顺利跑代码了,先展示一下运行效果:




可以看出这个运行时间真的需要很久,一上午过去了,最后一个代码块都还在读条中。这也是为什么我建议在把环境装上以后先把代码跑起来,然后再跟着视频学细节。(github的代码是UP老师已经改好的,所以不用担心好不容易跑完了结果发现代码要改的情况)
————————————————————————————————————————————

要进行自动调参,模型每一次调整都要重新进行初始化,这个时候就不能给一个现成已经初始化好的模型了,需要把初始化模型包装成一个方法提供给Trainer。

自动调参数据量比较大的时候,不想要输出特别多的日志,就把logging_steps调得大一些。

老师在这一段详细带了看后端代码,这一段要认真听。
(顺便提一句,虽然看了不少教程,但我还是觉得计算机和人工智能的相关知识就和天上的星星一样多,无论怎么学都感觉还有好多不会的东西……)
这里介绍了四种调参的后端,我们这里用到的是第一种,也是默认的Optuna。




跟着UP老师的指导一步步往里找,最后发现今天这种使用方式和之前的泰坦尼克号案例(详见主页上一篇文章)应用Optuna的方式有一些相似之处,最后都是回到安装库和字典传超参数。但是具体怎么调用的方式又有一些区别,先前那种更像是简明扼要直接定义一个对象就使用,这里用的感觉比较隐晦,不知道是不是算作一种封装?或者,集成?可能这就是大型项目和小白练手的区别吧。
后面老师微改了一下代码,直接把字典放进这个函数指定超参数,感觉这就和泰坦尼克号案例里面直接调用的方式有点像了。

泰坦尼克号案例使用Optuna的例子:https://www.kaggle.com/code/yunsuxiaozi/learn-to-use-the-optuna/notebook
原网页传送门

————————————————————————————————————————————
一些代码细节:
一前一后的这两个数字代表的是可调参数的范围:
batch_size大多设置为2的倍数,按指数增长去调,而不是1加1这样改。

使用这种方式的时候,不仅仅可以调Batch_Size,还可以调整优化器,比如用Adam,SVD等,比如老师在后续视频中示范的这样:

————————————————————————————————————————————
我的电脑最后跑出来的结果:完成了8个Trial,但其实到第3个Trial的时候已经达到极限了。

对比一下UP老师的结果:

————————————————————————————————————————————
老师展示的训练案例:中间发现效果不理想,直接剪枝停掉这次实验。这也是超参数的策略之一,决定什么时候停止实验。

————————————————————————————————————————————
最后UP老师的总结:

相关文章:
【Python学习笔记】Optuna + Transformer B站视频实践
【Python学习笔记】Optuna Transformer 实践 背景前摇(省流可不看): 之前以泰坦尼克号数据集为案例,学习了Optuna的基本操作,为了进一步巩固知识和便于包装简历,决定找个唬人一点的项目练练手。 ————…...
【自动驾驶/机器人面试C++八股精选】专栏介绍
目录 一、自动驾驶和机器人技术发展前景二、C在自动驾驶和机器人领域的地位三、专栏介绍四、订阅需知 一、自动驾驶和机器人技术发展前景 随着人工智能、机器学习、传感器技术和计算能力的进步,自动驾驶和机器人的技术水平不断提升,使得它们更加智能、可…...
Unity中一键生成具有身体感知的虚拟人物动作
在虚拟现实(VR)和增强现实(AR)的浪潮中,如何让虚拟人物的动作更加自然、真实,已经成为一个重要课题。AI4Animation项目,一个由 Sebastian Starke 主导的开源框架,为Unity开发者提供了强大的工具集,以实现这一目标。本文…...
谷粒商城实战-25-分布式组件-SpringCloud Alibaba-Nacos配置中心-加载多配置集
文章目录 一,拆分配置集二,配置文件中配置多配置集1,引用多配置集2,验证 三,多配置集总结1,使用场景2,优先级 这一节介绍如何加载多个配置集。 大多数情况下,我们把配置全部放在一个…...
UART编程
Q:为什么使用串口前要先在电脑上安装CH340驱动? 中断的作用? 环形buffer的作用? static和valitate的作用 三种编程方式简介 也可以通过DMA方式减小CPU资源的消耗 直接把数据在SRAM内存和UART模块进行传输 ,流程: …...
C++:右值引用
右值与左值 在讲解右值引用之前,我们就需要先辨析一下左值与右值的区别。 左值 左值是一个表示数据的表达式,我们可以获取它的地址并且对其赋值,左值可以出现在赋值操作符的左边,但是右值不能。 int i 0; int* p &i; do…...
(算法)硬币问题
问题:有1元,5元,10元,50元,100元,500元的硬币各有C1,C5,C10.C50,C100,C500个。 现在要用这些硬币来支付A元,最小需要多少枚硬币? 该题使用递归算法,利用局部最优解来推导…...
如何隐藏 Ubuntu 顶部状态栏
如何隐藏 Ubuntu 顶部状态栏 Chapter1 如何隐藏 Ubuntu 顶部状态栏Chapter2 Ubuntu增大屏幕可用面积之——自动隐藏顶部状态栏Chapter3 Ubuntu18.04隐藏顶栏与侧栏 Chapter1 如何隐藏 Ubuntu 顶部状态栏 https://www.sysgeek.cn/hide-top-bar-ubuntu/ 准备工作:安…...
【C++】入门基础(引用、inline、nullptr)
目录 一.引用 1.引用的定义 2.引用的特性 3.引用的使用场景 4.const引用 5.引用和指针的区别 二.inline 三.nullptr 一.引用 1.引用的定义 引用不是新定义一个变量,而是给已经存在的变量取一个别名,编译器不会给引用变量开辟内存空间,…...
24/07/10数据结构(5.1213)链表OJ
继续练习题: 7.判断链表是不是回文结构 对于一个链表,设计一个时间复杂度O(n)空间复杂度O(1)的算法,判断是否为回文结果 给定一个链表的头指针A,返回一个bool值代表其是否为回文结构. 测试样例:1->2->2->1 返回:ture bool chkPalindrome(ListNode* A){ …...
C++ 入门基础:开启编程之旅
引言 C 是一种高效、灵活且功能强大的编程语言,广泛应用于系统软件、游戏开发、嵌入式系统、科学计算等多个领域。作为 C 语言的扩展,C 不仅继承了 C 语言的过程化编程特性,还增加了面向对象编程(OOP)的支持ÿ…...
据传 OpenAI秘密研发“Strawberry”项目
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
简单的SQL字符型注入
目录 注入类型 判断字段数 确定回显点 查找数据库名 查找数据库表名 查询字段名 获取想要的数据 以sqli-labs靶场上的简单SQL注入为例 注入类型 判断是数字类型还是字符类型 常见的闭合方式 ?id1、?id1"、?id1)、?id1")等,大多都是单引号…...
HttpClient调用SpringBoot项目的文件上传接口实现文件上传
1.导入httpclient的jar包 这里导入了httpclient、httpmime11 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:sch…...
[leetcode]kth-smallest-element-in-a-sorted-matrix 有序矩阵中第k小元素
. - 力扣(LeetCode) class Solution { public:bool check(vector<vector<int>>& matrix, int mid, int k, int n) {int i n - 1;int j 0;int num 0;while (i > 0 && j < n) {if (matrix[i][j] < mid) {num i 1;j;…...
【经典面试题】是否形成有环链表
1.环形链表oj 2. oj解法 利用快慢指针: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/typedef struct ListNode ListNode; bool hasCycle(struct ListNode *head) {ListNode* slow head, *fast…...
Flask 用 Redis 缓存键值对-实例
Flask 使用起 Redis 来简直就是手到擒来,比 MySQL 简单多了,不需要那么多配置,实际代码就这么多,直接复制就能用。除了提供简单实用的实例以外,本文后面还会简单介绍一下 Redis 的安装与使用,初学者也能一看…...
我的世界1.21多种服务端开服教程,原版/Forge/Fabric/Paper/Mohist...,Minecraft开服教程
Minecraft(MC)1.21版多种服务端开服教程,我的世界1.21服务器搭建教程,MC原版/Forge/Fabric/Paper/Mohist服务端搭建教程,我的世界MOD/插件服开服教程。 本教程使用 Linux系统MCSManager 面板来搭建Minecraft服务器。 …...
docker安装nginx并配置https
参考 docker安装nginx并配置https-腾讯云开发者社区-腾讯云 (tencent.com) 证书的生成 参见:SpringBoot项目配置HTTPS接口的安全访问(openssl配置)_配置接口访问-CSDN博客 步骤 1: 拉取Nginx镜像 docker pull nginx 好使的镜像如下&#x…...
永磁同步电机控制算法--基于 SVM 的无磁链环 DTC
永磁同步电机无磁链环 DTC 通过控制定子磁链交轴分量来直接控制转矩,不再要求控制磁链幅值恒定,省去了传统 DTC 中的磁链环,不仅转矩响应更快,有效抑制了转矩脉动,而且提高了电机功率因数。但无磁链环 DTC 方案仍采用传…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
