MongoDB数据库从入门到精通系列之八:调整oplog大小
MongoDB数据库从入门到精通系列之八:调整oplog大小
- 一、oplog的概念
- 二、oplog大小
- 三、调整oplog大小详细步骤
一、oplog的概念
- 操作日志oplog包含了主节点执行的每一次写操作。
- oplog是存在于主节点local数据库中的一个固定集合。
- 从节点通过查询此集合以获取需要复制的操作。
- 每个从节点都维护着自己的oplog,用来记录从主节点复制的每个操作。
- 从节点从同步源中获取操作,将其应用到自己的数据集上,然后再写入oplog中。
二、oplog大小
- 应该将主节点的oplog长度视为维护工作的时间窗口。如果主节点的oplog长度是一小时,那么就只有一小时的时间来修复所有的问题,否则可能会导致从节点落后过多,不得不从头开始重新同步。因此,通常会希望oplog可以保存几天到一周的数据,以便出现问题时给自己一些应对的空间。
- 在oplog被写满之前,没有简单的方法来得出它的长度。WiredTiger存储引擎允许在服务器端运行时在线调整oplog的大小。
- 应该首先在每个从节点成员上执行这些步骤。只有完成了从节点上的变更后,才可以对主节点进行更改。
- 每个可能成为主节点的服务器都应该拥有足够大的oplog,以便提供足够的时间窗口进行维护。
三、调整oplog大小详细步骤
要增加oplog的大小,
相关文章:
MongoDB数据库从入门到精通系列之八:调整oplog大小
MongoDB数据库从入门到精通系列之八:调整oplog大小 一、oplog的概念二、oplog大小三、调整oplog大小详细步骤一、oplog的概念 操作日志oplog包含了主节点执行的每一次写操作。oplog是存在于主节点local数据库中的一个固定集合。从节点通过查询此集合以获取需要复制的操作。每个…...
PCL 间接平差法拟合二维直线
目录 一、算法原理二、代码实现三、结果展示四、相关链接一、算法原理 通过传统最小二乘法对点云数据进行二维直线拟合时,可将误差只归因于一个方向上,本文假设误差只存在于 y y y轴方向上,设点云拟合的二维直线方程为: y =...
进程调度的基本过程
这里写目录标题什么是进程进程管理结构体或类的主要属性pid内存指针文件描述符表辅助进程调度的属性并发并行并发什么是进程 进程是操作系统对一个正在运行的程序的一种抽象,也就是说,一个运行起来的程序就是一个进程。 进程又是操作系统进行资源分配的…...
python自动化办公(二)
上接python自动化办公(一) 文章目录文件和目录操作使用shutil库文件查找globfnmatchhashlib文件和目录操作 使用shutil库 shutil库也是Python标准库,它可以处理文件、文件夹、压缩包,能实现文件复制、移动、压缩、解压缩等功能。…...
Qt Quick - GridLayout 网格布局
GridLayout 理论总结一、概述二、依赖属性三、例子1. 不含跨行的2. 带跨行列的3. 从右到左一、概述 GridLayout 是最常用的布局器,也叫网格布局器,如果网格布局被调整大小,布局中的所有 Item 将被重新排列。它类似于基于widget的QGridLayout…...
安卓手机也可以使用新必应NewBing
没有魔法安卓手机也可以使用新必应NewBing 目前知道的是安卓手机 安卓手机先安装一个猴狐浏览器 打开手机自带浏览器,搜索关键词:猴狐浏览器,找到官网 也可以直接复制这个网址 狐猴浏览器 lemurbrowser CoolAPK 我的手机是荣耀安卓手机…...
支付系统设计:消息重试组件封装
文章目录前言一、重试场景分析一、如何实现重试1. 扫表2. 基于中间件自身特性3. 基于框架4. 根据公司业务特性自己实现的重试二、重试组件封装1. 需求分析2. 模块设计2.1 持久化模块1. 表定义2. 持久化接口定义3. 持久化配置类2.2 重试模块1.启动2.重试3. 业务端使用1. 引入依赖…...
Visual Studio 2022 c#中很实用的VS默认快捷键和原生功能
常常使用VS感觉还是有必要掌握其默认的快捷键,我这个人比较懒,不喜欢动不动就去设置快捷键,系统有就用,记住了就可以到处用,问题是像我们这种有很多个工作场所的人不可能每台电脑都去配置一下快键键。实际上我使用3dma…...
Python的30个编程技巧
1. 原地交换两个数字 Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例: x,y 10,20 print(x,y) x,y y,x print(x,y) #1 (10, 20) #2 (20, 10) 赋值的右侧形成了一个新的元组,左侧立即解…...
MySQL:JDBC
什么是JDBC? JDBC( Java DataBase Connectivity ) 称为 Java数据库连接 ,它是一种用于数据库访问的应用程序 API ,由一组用Java语言编写的类和接口组成,有了JDBC就可以 用统一的语法对多种关系数据库进行访问,而不用担…...
C++【list容器模拟实现函数解析】
list容器&&模拟实现函数解析 文章目录list容器&&模拟实现函数解析一、list容器使用介绍二、list容器模拟实现及函数解析2.1 list结构体创建2.2 迭代器封装2.21 构造函数:2.22 前置和后置及- -2.23 解引用2.24 判断相等2.25 箭头重载2.26 第二个和第…...
(Java)试题 算法提高 约数个数
一、题目 (1)资源限制 内存限制:512.0MB C/C时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s (2)输入 输入一个正整数N (3)输出 N有几个约数 &a…...
魔法反射--java反射初入门(基础篇)
👳我亲爱的各位大佬们好😘😘😘 ♨️本篇文章记录的为 java反射初入门 相关内容,适合在学Java的小白,帮助新手快速上手,也适合复习中,面试中的大佬🙉🙉🙉。 ♨️如果文章有…...
概率统计_协方差的传播 Covariance Propagation
1. 方差的传播 误差的传播是指分析在形如的关系中,参量误差(x)对变量误差(y)的影响有多大。误差的传播与函数的微分紧密相关,本质是在利用当Δ x 不大时,。 方差计算公式: X为变量,为总体均值,N为总体例数。求变量X与均值的差的平方再求平均值,即得到方差。方差…...
大学生考研的意义?
当我拿起笔头,准备写这个话题时,心里是非常难受的,因为看到太多的学生在最好的年华,在自由的大学本应该开拓知识,提升认知,动手实践,不断尝试和试错,不断历练自己跳出学生思维圈&…...
【C++笔试强训】第三十一天
🎇C笔试强训 博客主页:一起去看日落吗分享博主的C刷题日常,大家一起学习博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话:夜色难免微凉,前方必有曙光 🌞。 选择题 &#x…...
toString()、equals()是什么,为啥需要重写,多种方法来重写
https://m.runoob.com/java/java-object-class.html toString() 1.为什么会有toString 子类继承父类就可以使用父类所有非私有的属性的方法。 在Java中所有类都直接或者间接继承Object类,可以说只要是Object类里面定义的非私有的属性和方法,任何类都可…...
家装材料清单中会有哪些装饰材料?
在家居装修中,业主可以根据装修公司出具的材料清单去一一采购,这样不至于有遗漏,就算采用全包的方式,通过材料清单也可以大致了解当时房子装修所用的材料,补充自己的装修知识。下面跟随小编一起了解下房子装修材料中所…...
【C++初阶】6. CC++内存管理
1. C/C内存分布 我们先来看下面的一段代码和相关问题 int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticVar 1;int localVar 1;int num1[10] { 1, 2, 3, 4 };char char2[] "abcd";const char* pChar3 "abcd";int* …...
【数据结构】万字超详解顺序表(比细狗还细)
我这个人走得很慢,但是我从不后退。 ——亚伯拉罕林肯 目录 一.什么是线性表? 二.什么是顺序表? 三.接口函数的实现 1.创建工程 2.构造顺序表 3.初始化顺序表 3.初始化顺序表 4.顺序表的尾插 5.顺序…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
