当前位置: 首页 > news >正文

支持向量机 (support vector machine,SVM)

支持向量机 (support vector machine,SVM)

flyfish

支持向量机是一种用于分类和回归的机器学习模型。在分类任务中,SVM试图找到一个最佳的分隔超平面,使得不同类别的数据点在空间中被尽可能宽的间隔分开。

超平面方程和直线方程

超平面(hyperplane)是一个在高维空间中将空间分成两个部分的几何对象。它的方程可以在不同维度的空间中有不同的形式。

一维空间中的“超平面”

在一维空间中,超平面就是一个点。假设我们在一维空间中有一个超平面,它可以表示为:
x = a x = a x=a
其中, a a a 是某个常数。这表示一维空间中的一个特定点,将空间分成两个部分: x < a x < a x<a x > a x > a x>a

二维空间中的超平面(直线)

在二维空间中,超平面就是一条直线。直线的方程可以表示为:
y = k x + b y = kx + b y=kx+b
其中, k k k 是斜率, b b b 是截距。或者,可以表示为标准形式:
a x + b y + c = 0 ax + by + c = 0 ax+by+c=0
其中, a a a b b b c c c 是常数。
这条直线将二维空间分成两个半平面。

三维空间中的超平面(平面)

在三维空间中,超平面是一个平面。平面的方程可以表示为:
a x + b y + c z + d = 0 ax + by + cz + d = 0 ax+by+cz+d=0
其中, a a a b b b c c c d d d 是常数。
这个平面将三维空间分成两个半空间。

一般形式的超平面方程

在更高维度的空间中,超平面的方程一般可以表示为:
w ⋅ x + b = 0 \mathbf{w} \cdot \mathbf{x} + b = 0 wx+b=0
其中:

  • w = ( w 1 , w 2 , … , w n ) \mathbf{w} = (w_1, w_2, \ldots, w_n) w=(w1,w2,,wn) 是一个权重向量,定义了超平面的方向。

  • x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn) 是一个点的坐标向量。

  • b b b 是偏置。
    这个超平面将 n n n 维空间分成两个半空间。

直线方程是超平面方程在二维空间中的一种特例。一般来说,超平面是 n n n 维空间中的一个 ( n − 1 ) (n-1) (n1) 维的对象:

  • 在一维空间中,超平面是一个点。

  • 在二维空间中,超平面是一个直线。

  • 在三维空间中,超平面是一个平面。

  • 在四维及更高维空间中,超平面是一个 ( n − 1 ) (n-1) (n1) 维的对象。

示例和理解

一维空间中的超平面

x = 2 x = 2 x=2
这是在一维空间中的一个点,将空间分为 x < 2 x < 2 x<2 x > 2 x > 2 x>2 两部分。

二维空间中的超平面

标准形式:
2 x + 3 y − 6 = 0 2x + 3y - 6 = 0 2x+3y6=0
或者:
y = − 2 3 x + 2 y = -\frac{2}{3}x + 2 y=32x+2
这是在二维空间中的一条直线。

三维空间中的超平面

2 x + 3 y + 4 z − 5 = 0 2x + 3y + 4z - 5 = 0 2x+3y+4z5=0
这是在三维空间中的一个平面。
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm# 生成一些数据
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
Y = [0] * 20 + [1] * 20# 拟合模型
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)# 绘制数据点和分类超平面
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()# 创建网格以评估模型
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)# 绘制分类超平面
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k')
plt.show()

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from mpl_toolkits.mplot3d import Axes3D# 生成三维数据
np.random.seed(0)
X = np.r_[np.random.randn(20, 3) - [2, 2, 2], np.random.randn(20, 3) + [2, 2, 2]]
Y = [0] * 20 + [1] * 20# 拟合模型
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)# 创建一个网格来绘制分类平面
xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
zz = (-clf.intercept_[0] - clf.coef_[0][0] * xx - clf.coef_[0][1] * yy) / clf.coef_[0][2]# 绘制数据点和分类平面
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')ax.scatter(X[:20, 0], X[:20, 1], X[:20, 2], color='b', marker='o', label='Class 0')
ax.scatter(X[20:, 0], X[20:, 1], X[20:, 2], color='r', marker='^', label='Class 1')ax.plot_surface(xx, yy, zz, color='g', alpha=0.5, rstride=100, cstride=100)ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('X3')plt.legend()
plt.show()

最大间隔解释

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.svm import SVC
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 生成一个简单的二维分类数据集
X, y = datasets.make_blobs(n_samples=50, centers=2, random_state=6)# 训练一个线性支持向量机
clf = SVC(kernel='linear', C=1000)
clf.fit(X, y)# 获取分隔超平面
w = clf.coef_[0]
b = clf.intercept_[0]# 计算分隔超平面的两个端点
x = np.linspace(-10, 10, 100)
y_hyperplane = -w[0]/w[1] * x - b/w[1]# 计算间隔边界
margin = 1 / np.sqrt(np.sum(w ** 2))
y_margin_up = y_hyperplane + margin
y_margin_down = y_hyperplane - margin# 绘制数据点、分隔超平面及其间隔边界
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='coolwarm')
plt.plot(x, y_hyperplane, 'k-', label='分隔超平面')
plt.plot(x, y_margin_up, 'k--', label='上间隔边界')
plt.plot(x, y_margin_down, 'k--', label='下间隔边界')# 绘制支持向量
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k', label='支持向量')plt.legend()
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('最大化间隔的 SVM')
plt.show()

拉格朗日乘子法

相关文章:

支持向量机 (support vector machine,SVM)

支持向量机 &#xff08;support vector machine&#xff0c;SVM&#xff09; flyfish 支持向量机是一种用于分类和回归的机器学习模型。在分类任务中&#xff0c;SVM试图找到一个最佳的分隔超平面&#xff0c;使得不同类别的数据点在空间中被尽可能宽的间隔分开。 超平面方…...

宝塔面板以www用户运行composer

方式一 执行命令时指定www用户 sudo -u www composer update方式二 在网站配置中的composer选项卡中选择配置运行...

昇思25天打卡营-mindspore-ML- Day24-基于 MindSpore 实现 BERT 对话情绪识别

学习笔记&#xff1a;基于MindSpore实现BERT对话情绪识别 算法原理 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;是由Google于2018年开发的一种预训练语言表示模型。BERT的核心原理是通过在大量文本上预训练深度双向表示&#xff0…...

【精品资料】模块化数据中心解决方案(33页PPT)

引言&#xff1a;模块化数据中心解决方案是一种创新的数据中心设计和部署策略&#xff0c;旨在提高数据中心的灵活性、可扩展性和效率。这种方案通过将数据中心的基础设施、计算、存储和网络资源封装到标准化的模块中&#xff0c;实现了快速部署、易于管理和高效运维的目标 方案…...

N6 word2vec文本分类

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊# 前言 前言 上周学习了训练word2vec模型&#xff0c;这周进行相关实战 1. 导入所需库和设备配置 import torch import torch.nn as nn import torchvision …...

excel、word、ppt 下载安装步骤整理

请按照我的步骤开始操作&#xff0c;注意以下截图红框标记处&#xff08;往往都是需要点击的地方&#xff09; 第一步&#xff1a;下载 首先进入office下载网址&#xff1a; otp.landian.vip 然后点击下载 拉到下方 下载站点&#xff08;这里根据自己的需要选择下载&#x…...

【python学习】标准库之日期和时间库定义、功能、使用场景和示例

引言 datetime模块最初是由 Alex Martelli 在 Python 2.3 版本引入的&#xff0c;目的是为了解决之前版本中处理日期和时间时存在的限制和不便 在datetime模块出现之前&#xff0c;Python 主要使用time模块来处理时间相关的功能&#xff0c;但 time模块主要基于 Unix 纪元时间&…...

Android --- Kotlin学习之路:基础语法学习笔记

------>可读可写变量 var name: String "Hello World";------>只读变量 val name: String "Hello World"------>类型推断 val name: String "Hello World" 可以写成 val name "Hello World"------>基本数据类型 1…...

嵌入式智能手表项目实现分享

简介 这是一个基于STM32F411CUE6和FreeRTOS和LVGL的低成本的超多功能的STM32智能手表~ 推荐 如果觉得这个手表的硬件难做,又想学习相关的东西,可以试下这个新出的开发板,功能和例程demo更多!FriPi炸鸡派STM32F411开发板: 【STM32开发板】 FryPi炸鸡派 - 嘉立创EDA开源硬件平…...

`nmap`模块是一个用于与Nmap安全扫描器交互的库

在Python中&#xff0c;nmap模块是一个用于与Nmap安全扫描器交互的库。Nmap&#xff08;Network Mapper&#xff09;是一个开源工具&#xff0c;用于发现网络上的设备和服务。虽然Python的nmap模块可能不是官方的Nmap库&#xff08;因为Nmap本身是用C/C编写的&#xff09;&…...

JVM系列 | 对象的创建与存储

JVM系列 | 对象的生命周期1 对象的创建与存储 文章目录 前言对象的创建过程内存空间的分配方式方式1 | 指针碰撞方式2 | 空闲列表 线程安全问题 | 避免空间冲突的方式方式1 | 同步处理&#xff08;加锁)方式2 | 本地线程分配缓存 对象的内存布局Part1 | 对象头Mark Word类型指针…...

【JavaScript 算法】快速排序:高效的排序算法

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 一、算法原理二、算法实现三、应用场景四、优化与扩展五、总结 快速排序&#xff08;Quick Sort&#xff09;是一种高效的排序算法&#xff0c;通过分治法将数组分为较小的子数组&#xff0c;递归地排序子数组。快速排序通常…...

Excel如何才能忽略隐藏行进行复制粘贴?

你有没有遇到这样的情况&#xff1a;数据很多&#xff0c;将一些数据隐藏后&#xff0c;进行复制粘贴&#xff0c;结果发现粘贴后的内容仍然将整个数据都显示出来了&#xff01;那么&#xff0c;Excel如何才能忽略隐藏行进行复制粘贴&#xff1f; 打开你的Excel表格 Excel如何…...

行人越界检测 越线 越界区域 多边形IOU越界判断

行人越界判断 越界判断方式&#xff1a;&#xff08;1&#xff09;bbox中心点越界&#xff08;或自定义&#xff09;&#xff08;2&#xff09;交并比IoU判断 越界类型&#xff1a;&#xff08;1&#xff09;越线 &#xff08;2&#xff09;越界区域 1.越线判断 bbox中心点xc、…...

「UCD」浅谈蓝湖Figma交互设计对齐

在现代数字产品的设计和开发过程中,选择合适的工具对于提高团队效率和保证产品质量至关重要。本文将从开发和设计两个不同的角度,探讨蓝湖和Figma两款流行工具的优势与不足,并提出结论和建议。 开发研发视角:蓝湖 优点: 清晰的设计规范:蓝湖为开发工程师提供了清晰的设计…...

VUE3 播放RTSP实时、回放(NVR录像机)视频流(使用WebRTC)

1、下载webrtc-streamer&#xff0c;下载的最新window版本 Releases mpromonet/webrtc-streamer GitHub 2、解压下载包 3、webrtc-streamer.exe启动服务 &#xff08;注意&#xff1a;这里可以通过当前文件夹下用cmd命令webrtc-streamer.exe -o这样占用cpu会很少&#xff0c…...

[PaddlePaddle飞桨] PaddleOCR-光学字符识别-小模型部署

PaddleOCR的GitHub项目地址 推荐环境&#xff1a; PaddlePaddle > 2.1.2 Python > 3.7 CUDA > 10.1 CUDNN > 7.6pip下载指令&#xff1a; python -m pip install paddlepaddle-gpu2.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddleocr2.7…...

Python应用开发——30天学习Streamlit Python包进行APP的构建(15):优化性能并为应用程序添加状态

Caching and state 优化性能并为应用程序添加状态! Caching 缓存 Streamlit 为数据和全局资源提供了强大的缓存原语。即使从网络加载数据、处理大型数据集或执行昂贵的计算,它们也能让您的应用程序保持高性能。 本页仅包含有关 st.cache_data API 的信息。如需深入了解缓…...

python实现openssl的EVP_BytesToKey及AES_256_CBC加解密算法

python实现openssl EVP_BytesToKey(EVP_aes_256_cbc(), EVP_md5(), NULL, pass, passlen, 1, key, iv); 并实现AES 256 CBC加解密. # encoding:utf-8import base64 from Crypto.Cipher import AES from Crypto import Random from hashlib import md5def EVP_BytesToKey(passw…...

基于SpringBoot+VueJS+微信小程序技术的图书森林共享小程序设计与实现

注&#xff1a;每个学校每个老师对论文的格式要求不一样&#xff0c;故本论文只供参考&#xff0c;本论文页数达到60页以上&#xff0c;字数在6000及以上。 基于SpringBootVueJS微信小程序技术的图书森林共享小程序设计与实现 目录 基于SpringBootVueJS微信小程序技术的图书森…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...