【数据结构】--- 堆的应用
个人主页:星纭-CSDN博客
系列文章专栏 :数据结构
踏上取经路,比抵达灵山更重要!一起努力一起进步!
一.堆排序
在前一个文章的学习中,我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢???
首先思考这样一个问题,假设给定一个随机的数组,如何将这个数组建堆(在不使用额外的空间的条件下)。
这个问题不难,只需用到向上调整算法即可。
int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}return 0;
}
通过调试不难发现此时已经是一个大堆了。
如果想要得到小堆,只需要更改向上调整函数即可。
得到了大堆之后,又如何将这个数组排序得到一个升序的数组呢???
因为在大堆中,堆顶的数据一定是最大的,可以先将堆顶数据和数组最后一个位置上的数据进行交换,不管此时最大的数据,只看前size-1这个数据,进行向下调整得到第二大的数据,再更倒数第二个位置上的数据进行交换,..........依次进行下去就会得到一个升序的数组。
int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}int end = sizeof(a) / sizeof(a[0]) - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}return 0;
}
简单来说,升序,建大堆,降序,建小堆。这就是堆排序。
然后就是向下调整建堆。假设给定一个数组,使用二叉树的形式表示,如下图所示
假设这个二叉树,对于根来说,其左子树是大堆,右子树也是大堆,而这整个二叉树并不是大堆,我们就可以使用向下调整来使其变成大堆。可是这样一个随机的数组肯定是不满足上述的条件的,那么该如何使用向下调整算法来使其变成大堆呢?
答案就是倒着调整。
假设我们从最后一个数据开始,一个节点是既可以看作大堆也可以看作小堆的,此时我们就不需要对其进行调整,对于完全二叉树来说,他的叶子节点都不需要调整,所以我们就需要调整倒数第一个非叶子节点。以上图举例,也就是第三层第二个节点,将它和它的孩子节点看作一个树,这样就可以调整了。
那么倒数第一个非叶子节点的下标该怎么求呢?
倒数第一个非叶子节点是最后一个节点父亲节点。而最后一个节点的下标是n-1。所以倒数第一个非叶子节点的下标就是(n-1-1)/ 2;
for (int i = (n-1-1)/2; i >= 0; i--){AdjustDown(a, n, i);}
二.建堆的时间复杂度
既然有两种不同的建堆算法,那么采用哪一种算法来建堆是更加好的呢?
所以接下来算一算两个算法的时间复杂度
对于一个完全二叉树而言,假设其高度是h,那么它的节点个数最少和最多情情况,分别是最后一层只有一个节点和一个满二叉树。
对于一个满二叉树来说总节点个数n和高度h的关系是
F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-1) = 2^h - 1。
h = log2(n + 1)
对于最后一层只有一个节点的二叉树而言总节点个数和高度h的关系是
F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-2) + 1 = 2^(h-1) - 1 + 1= 2^(h-1)。
h = log2(n) - 1
根据大O的渐进表示法,我们可以大致得到h = logN的。
这样我们就得到了h和N之间的关系。
1.向上调整
计算向上调整的时间复杂度,我们需要计算总共向上调整了几次。
T(h) = 2^1*1 + 2^2 * 2 + ... + 2^(h-2)*(h-2) + 2^(h-1)*(h-1).
2*T(h) = 2^2*1 + 2^3 * 2 + ... + 2^(h-1)*(h-2) + 2^h*(h-1).
-T(h) = 2^1 + 2^2 + ... +2^(h-1) - 2^h*(h-1).= 2^h - 2 -2^h*(h-1)= 2^h(1-h+1) -2 T(h) = 2 + 2 ^ h * hT(N) = 2 + 2 * log(N) * N = O(N * logN)
向上调整的时间复杂度是N*logN.
2.向下调整
T(h) = 2^0*(h-1) + 2^1*(h-2) + ... +2^(h-2) * 1
2 * T(h) = 2^1*(h-1) + 2^2*(h-2) + ... +2^(h-2) * 2+2^(h-1) * 1
T(h) = 2^1 + 2^2+...+2^(h-2) +2^(h-1) - (h-1)= 2^h - 2 - h + 1= 2^h - h - 1= N - logN - 1= O(N)
对比不难发现向下调整的时间复杂度算法更优。
三.TopK问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
利用此算法的时间复杂度是O(N)
相关文章:

【数据结构】--- 堆的应用
个人主页:星纭-CSDN博客 系列文章专栏 :数据结构 踏上取经路,比抵达灵山更重要!一起努力一起进步! 一.堆排序 在前一个文章的学习中,我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢&…...

0基础学会在亚马逊云科技AWS上利用SageMaker、PEFT和LoRA高效微调AI大语言模型(含具体教程和代码)
项目简介: 小李哥今天将继续介绍亚马逊云科技AWS云计算平台上的前沿前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS上的AI软甲开发最佳实践,并应用到自己的日常工作里。本次介绍的是如何在Amazon SageMaker上…...

护网HW面试——redis利用方式即复现
参考:https://xz.aliyun.com/t/13071 面试中经常会问到ssrf的打法,讲到ssrf那么就会讲到配合打内网的redis,本篇就介绍redis的打法。 未授权 原理: Redis默认情况下,会绑定在0.0.0.0:6379,如果没有采用相关…...
C++ //练习 15.8 给出静态类型和动态类型的定义。
C Primer(第5版) 练习 15.8 练习 15.8 给出静态类型和动态类型的定义。 环境:Linux Ubuntu(云服务器) 工具:vim 解释 静态类型:在编译时已知,是在变量声明时的类型或表达式生成的…...

阿里云ECS服务器安装jdk并运行jar包,访问成功详解
安装 OpenJDK 8 使用 yum 包管理器安装 OpenJDK 8 sudo yum install -y java-1.8.0-openjdk-devel 验证安装 安装完成后,验证 JDK 是否安装成功: java -version设置 JAVA_HOME 环境变量: 为了确保系统中的其他应用程序可以找到 JDK&…...
Windows系统上使用npm来安装和配置Yarn,在VSCode中使用
一、安装Yarn 1. 安装Node.js和npm 如果还没有安装Node.js和npm,可以从Node.js官方网站下载并安装最新版本的Node.js,npm会随Node.js一起安装。 2. 使用npm安装Yarn 打开命令提示符或PowerShell,运行以下命令来全局安装Yarn: …...

Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理
Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理 目录 Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理 一、简单介绍 二、在Unity中设置颜色空间 三、Unity中的Gamma…...
JavaScript的学习(二)
今天继续学习JavaScript的第二天,还是打基础 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title…...

【接口自动化_06课_Pytest+Excel+Allure完整框架集成】
一、logging在接口自动化里的应用 1、设置日志的配置,并收集日志文件 日志的设置需要在pytest.ini文件里设置。这个里面尽量不要有中文 2、debug日志的打印 pytest.ini文件的开关一定得是true才能在控制台打印日志 import allure import pytest from P06_PytestFr…...

Profibus协议转Profinet协议网关模块连接智能电表通讯案例
一、背景 在工业自动化领域,Profibus协议和Profinet协议是两种常见的工业通讯协议,而连接智能电表需要用到这两种协议之间的网关模块。本文将通过一个实际案例,详细介绍如何使用Profibus转Profinet模块(XD-PNPBM20)实…...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(九)-无人机服务区分离
引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…...

acrobat 中 PDF 复制时不能精确选中所选内容所在行的一种解决方法
现象:划取行的时候,自动扩展为多行 如果整段选中复制,粘贴后是乱码 解决步骤 识别完,保存 验证 可以按行复制了。 如果遇到仅使用 acrobat OCR 不能彻底解决的,更换其他自己熟悉的进行 OCR。...

安卓学习中遇到的问题【bug】
安卓学习中遇到的问题 1Gradle下载慢怎么办? Gradle下载慢怎么办? distributionUrlhttps://mirrors.cloud.tencent.com/gradle/gradle-7.5-bin.zip 2 Could not resolve all files for configuration ‘:classpath‘. > Could not resolv…...

【日常记录】【CSS】display:inline 的样式截断
文章目录 1. 案例2. css属性:box-decoration-break参考地址 1. 案例 现在有一篇文章,某些句子,是要被标记的,加一些css 让他突出一下 可以看到,在最后,断开了,那如若要让 断开哪里的样式 和 开始…...
数据库系统安全
数据库安全威胁 数据库作为信息系统中的核心组成部分,存储和管理着大量敏感和关键的数据,成为网络攻击者的主要目标之一。以下是常见的数据库安全威胁及其详细描述: 一、常见数据库安全威胁 SQL注入攻击(SQL Injectionÿ…...
Qt MV架构-代理模型
一、基本概念 代理模型可以将一个模型中的数据进行排序或者过滤,然后提供给视图进行显示。 Qt中提供了QSortFilterProxyModel作为标准的代理模型来完成模型中数据的排序和过滤。 要使用一个代理模型,则只需要为其设置源模型,然后再视图中使…...

WebSocket实现群聊功能、房间隔离
引用WebSocket相关依赖 <dependency><groupId>javax.websocket</groupId><artifactId>javax.websocket-api</artifactId><version>1.1</version></dependency><dependency><groupId>org.springframework</grou…...

顶顶通呼叫中心中间件实现随时启动和停止质检(mod_cti基于FreeSWITCH)
文章目录 前言联系我们拨号方案启动停止ASR执行FreeSWITCH 命令接口启动ASR接口停止ASR接口 通知配置cti.json配置质检结果写入数据库 前言 顶顶通呼叫中心中间件的实时质检功能是由两个模块组成:mod_asr 和 mod_qc。 mod_asr:负责调用ASR将用户们在通…...

基于conda包的环境创建、激活、管理与删除
Anaconda是一个免费、易于安装的包管理器、环境管理器和 Python 发行版,支持平台包括Windows、macOS 和 Linux。下载安装地址:Download Anaconda Distribution | Anaconda 很多不同的项目可能需要使用不同的环境。例如某个项目需要使用pytorch1.6&#x…...
处理线程安全的列表CopyOnWriteArrayList 和Collections.synchronizedList
ConcurrentModificationException 是 Java 中的一种异常,用于指示在迭代集合时,该集合的结构发生了并发修改。 在 Java 中,许多集合类(如 ArrayList, HashMap 等)都不是线程安全的。如果一个线程在迭代集合的同时&…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...