【数据结构】--- 堆的应用
个人主页:星纭-CSDN博客
系列文章专栏 :数据结构
踏上取经路,比抵达灵山更重要!一起努力一起进步!
一.堆排序
在前一个文章的学习中,我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢???
首先思考这样一个问题,假设给定一个随机的数组,如何将这个数组建堆(在不使用额外的空间的条件下)。
这个问题不难,只需用到向上调整算法即可。
int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}return 0;
}
通过调试不难发现此时已经是一个大堆了。
如果想要得到小堆,只需要更改向上调整函数即可。
得到了大堆之后,又如何将这个数组排序得到一个升序的数组呢???
因为在大堆中,堆顶的数据一定是最大的,可以先将堆顶数据和数组最后一个位置上的数据进行交换,不管此时最大的数据,只看前size-1这个数据,进行向下调整得到第二大的数据,再更倒数第二个位置上的数据进行交换,..........依次进行下去就会得到一个升序的数组。
int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}int end = sizeof(a) / sizeof(a[0]) - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}return 0;
}
简单来说,升序,建大堆,降序,建小堆。这就是堆排序。
然后就是向下调整建堆。假设给定一个数组,使用二叉树的形式表示,如下图所示
假设这个二叉树,对于根来说,其左子树是大堆,右子树也是大堆,而这整个二叉树并不是大堆,我们就可以使用向下调整来使其变成大堆。可是这样一个随机的数组肯定是不满足上述的条件的,那么该如何使用向下调整算法来使其变成大堆呢?
答案就是倒着调整。
假设我们从最后一个数据开始,一个节点是既可以看作大堆也可以看作小堆的,此时我们就不需要对其进行调整,对于完全二叉树来说,他的叶子节点都不需要调整,所以我们就需要调整倒数第一个非叶子节点。以上图举例,也就是第三层第二个节点,将它和它的孩子节点看作一个树,这样就可以调整了。
那么倒数第一个非叶子节点的下标该怎么求呢?
倒数第一个非叶子节点是最后一个节点父亲节点。而最后一个节点的下标是n-1。所以倒数第一个非叶子节点的下标就是(n-1-1)/ 2;
for (int i = (n-1-1)/2; i >= 0; i--){AdjustDown(a, n, i);}
二.建堆的时间复杂度
既然有两种不同的建堆算法,那么采用哪一种算法来建堆是更加好的呢?
所以接下来算一算两个算法的时间复杂度
对于一个完全二叉树而言,假设其高度是h,那么它的节点个数最少和最多情情况,分别是最后一层只有一个节点和一个满二叉树。
对于一个满二叉树来说总节点个数n和高度h的关系是
F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-1) = 2^h - 1。
h = log2(n + 1)
对于最后一层只有一个节点的二叉树而言总节点个数和高度h的关系是
F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-2) + 1 = 2^(h-1) - 1 + 1= 2^(h-1)。
h = log2(n) - 1
根据大O的渐进表示法,我们可以大致得到h = logN的。
这样我们就得到了h和N之间的关系。
1.向上调整
计算向上调整的时间复杂度,我们需要计算总共向上调整了几次。
T(h) = 2^1*1 + 2^2 * 2 + ... + 2^(h-2)*(h-2) + 2^(h-1)*(h-1).
2*T(h) = 2^2*1 + 2^3 * 2 + ... + 2^(h-1)*(h-2) + 2^h*(h-1).
-T(h) = 2^1 + 2^2 + ... +2^(h-1) - 2^h*(h-1).= 2^h - 2 -2^h*(h-1)= 2^h(1-h+1) -2 T(h) = 2 + 2 ^ h * hT(N) = 2 + 2 * log(N) * N = O(N * logN)
向上调整的时间复杂度是N*logN.
2.向下调整
T(h) = 2^0*(h-1) + 2^1*(h-2) + ... +2^(h-2) * 1
2 * T(h) = 2^1*(h-1) + 2^2*(h-2) + ... +2^(h-2) * 2+2^(h-1) * 1
T(h) = 2^1 + 2^2+...+2^(h-2) +2^(h-1) - (h-1)= 2^h - 2 - h + 1= 2^h - h - 1= N - logN - 1= O(N)
对比不难发现向下调整的时间复杂度算法更优。
三.TopK问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
利用此算法的时间复杂度是O(N)
相关文章:

【数据结构】--- 堆的应用
个人主页:星纭-CSDN博客 系列文章专栏 :数据结构 踏上取经路,比抵达灵山更重要!一起努力一起进步! 一.堆排序 在前一个文章的学习中,我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢&…...

0基础学会在亚马逊云科技AWS上利用SageMaker、PEFT和LoRA高效微调AI大语言模型(含具体教程和代码)
项目简介: 小李哥今天将继续介绍亚马逊云科技AWS云计算平台上的前沿前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS上的AI软甲开发最佳实践,并应用到自己的日常工作里。本次介绍的是如何在Amazon SageMaker上…...

护网HW面试——redis利用方式即复现
参考:https://xz.aliyun.com/t/13071 面试中经常会问到ssrf的打法,讲到ssrf那么就会讲到配合打内网的redis,本篇就介绍redis的打法。 未授权 原理: Redis默认情况下,会绑定在0.0.0.0:6379,如果没有采用相关…...
C++ //练习 15.8 给出静态类型和动态类型的定义。
C Primer(第5版) 练习 15.8 练习 15.8 给出静态类型和动态类型的定义。 环境:Linux Ubuntu(云服务器) 工具:vim 解释 静态类型:在编译时已知,是在变量声明时的类型或表达式生成的…...

阿里云ECS服务器安装jdk并运行jar包,访问成功详解
安装 OpenJDK 8 使用 yum 包管理器安装 OpenJDK 8 sudo yum install -y java-1.8.0-openjdk-devel 验证安装 安装完成后,验证 JDK 是否安装成功: java -version设置 JAVA_HOME 环境变量: 为了确保系统中的其他应用程序可以找到 JDK&…...
Windows系统上使用npm来安装和配置Yarn,在VSCode中使用
一、安装Yarn 1. 安装Node.js和npm 如果还没有安装Node.js和npm,可以从Node.js官方网站下载并安装最新版本的Node.js,npm会随Node.js一起安装。 2. 使用npm安装Yarn 打开命令提示符或PowerShell,运行以下命令来全局安装Yarn: …...

Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理
Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理 目录 Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理 一、简单介绍 二、在Unity中设置颜色空间 三、Unity中的Gamma…...
JavaScript的学习(二)
今天继续学习JavaScript的第二天,还是打基础 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title…...

【接口自动化_06课_Pytest+Excel+Allure完整框架集成】
一、logging在接口自动化里的应用 1、设置日志的配置,并收集日志文件 日志的设置需要在pytest.ini文件里设置。这个里面尽量不要有中文 2、debug日志的打印 pytest.ini文件的开关一定得是true才能在控制台打印日志 import allure import pytest from P06_PytestFr…...

Profibus协议转Profinet协议网关模块连接智能电表通讯案例
一、背景 在工业自动化领域,Profibus协议和Profinet协议是两种常见的工业通讯协议,而连接智能电表需要用到这两种协议之间的网关模块。本文将通过一个实际案例,详细介绍如何使用Profibus转Profinet模块(XD-PNPBM20)实…...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(九)-无人机服务区分离
引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…...

acrobat 中 PDF 复制时不能精确选中所选内容所在行的一种解决方法
现象:划取行的时候,自动扩展为多行 如果整段选中复制,粘贴后是乱码 解决步骤 识别完,保存 验证 可以按行复制了。 如果遇到仅使用 acrobat OCR 不能彻底解决的,更换其他自己熟悉的进行 OCR。...

安卓学习中遇到的问题【bug】
安卓学习中遇到的问题 1Gradle下载慢怎么办? Gradle下载慢怎么办? distributionUrlhttps://mirrors.cloud.tencent.com/gradle/gradle-7.5-bin.zip 2 Could not resolve all files for configuration ‘:classpath‘. > Could not resolv…...

【日常记录】【CSS】display:inline 的样式截断
文章目录 1. 案例2. css属性:box-decoration-break参考地址 1. 案例 现在有一篇文章,某些句子,是要被标记的,加一些css 让他突出一下 可以看到,在最后,断开了,那如若要让 断开哪里的样式 和 开始…...
数据库系统安全
数据库安全威胁 数据库作为信息系统中的核心组成部分,存储和管理着大量敏感和关键的数据,成为网络攻击者的主要目标之一。以下是常见的数据库安全威胁及其详细描述: 一、常见数据库安全威胁 SQL注入攻击(SQL Injectionÿ…...
Qt MV架构-代理模型
一、基本概念 代理模型可以将一个模型中的数据进行排序或者过滤,然后提供给视图进行显示。 Qt中提供了QSortFilterProxyModel作为标准的代理模型来完成模型中数据的排序和过滤。 要使用一个代理模型,则只需要为其设置源模型,然后再视图中使…...

WebSocket实现群聊功能、房间隔离
引用WebSocket相关依赖 <dependency><groupId>javax.websocket</groupId><artifactId>javax.websocket-api</artifactId><version>1.1</version></dependency><dependency><groupId>org.springframework</grou…...

顶顶通呼叫中心中间件实现随时启动和停止质检(mod_cti基于FreeSWITCH)
文章目录 前言联系我们拨号方案启动停止ASR执行FreeSWITCH 命令接口启动ASR接口停止ASR接口 通知配置cti.json配置质检结果写入数据库 前言 顶顶通呼叫中心中间件的实时质检功能是由两个模块组成:mod_asr 和 mod_qc。 mod_asr:负责调用ASR将用户们在通…...

基于conda包的环境创建、激活、管理与删除
Anaconda是一个免费、易于安装的包管理器、环境管理器和 Python 发行版,支持平台包括Windows、macOS 和 Linux。下载安装地址:Download Anaconda Distribution | Anaconda 很多不同的项目可能需要使用不同的环境。例如某个项目需要使用pytorch1.6&#x…...
处理线程安全的列表CopyOnWriteArrayList 和Collections.synchronizedList
ConcurrentModificationException 是 Java 中的一种异常,用于指示在迭代集合时,该集合的结构发生了并发修改。 在 Java 中,许多集合类(如 ArrayList, HashMap 等)都不是线程安全的。如果一个线程在迭代集合的同时&…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...