当前位置: 首页 > news >正文

【数据结构】--- 堆的应用

 

 个人主页:星纭-CSDN博客

系列文章专栏 :数据结构

踏上取经路,比抵达灵山更重要!一起努力一起进步!

一.堆排序 

 在前一个文章的学习中,我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢???

首先思考这样一个问题,假设给定一个随机的数组,如何将这个数组建堆(在不使用额外的空间的条件下)。

这个问题不难,只需用到向上调整算法即可。

int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}return 0;
}

通过调试不难发现此时已经是一个大堆了。

如果想要得到小堆,只需要更改向上调整函数即可。

得到了大堆之后,又如何将这个数组排序得到一个升序的数组呢???

因为在大堆中,堆顶的数据一定是最大的,可以先将堆顶数据和数组最后一个位置上的数据进行交换,不管此时最大的数据,只看前size-1这个数据,进行向下调整得到第二大的数据,再更倒数第二个位置上的数据进行交换,..........依次进行下去就会得到一个升序的数组。 

int main()
{int a[] = { 4,2,8,1,5,6,9,7,3,2,23,55,232,66,222,33,7,1,66,3333,999 };int i = 1;for (i = 1; i < sizeof(a) / sizeof(a[0]); i++) {AdjustUp(a, i);}int end = sizeof(a) / sizeof(a[0]) - 1;while (end > 0) {Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}return 0;
}

简单来说,升序,建大堆,降序,建小堆。这就是堆排序。

然后就是向下调整建堆。假设给定一个数组,使用二叉树的形式表示,如下图所示 

假设这个二叉树,对于根来说,其左子树是大堆,右子树也是大堆,而这整个二叉树并不是大堆,我们就可以使用向下调整来使其变成大堆。可是这样一个随机的数组肯定是不满足上述的条件的,那么该如何使用向下调整算法来使其变成大堆呢?

答案就是倒着调整。

假设我们从最后一个数据开始,一个节点是既可以看作大堆也可以看作小堆的,此时我们就不需要对其进行调整,对于完全二叉树来说,他的叶子节点都不需要调整,所以我们就需要调整倒数第一个非叶子节点。以上图举例,也就是第三层第二个节点,将它和它的孩子节点看作一个树,这样就可以调整了。

那么倒数第一个非叶子节点的下标该怎么求呢?

倒数第一个非叶子节点是最后一个节点父亲节点。而最后一个节点的下标是n-1。所以倒数第一个非叶子节点的下标就是(n-1-1)/ 2;

	for (int i = (n-1-1)/2; i >= 0; i--){AdjustDown(a, n, i);}

二.建堆的时间复杂度

既然有两种不同的建堆算法,那么采用哪一种算法来建堆是更加好的呢?

所以接下来算一算两个算法的时间复杂度 

对于一个完全二叉树而言,假设其高度是h,那么它的节点个数最少和最多情情况,分别是最后一层只有一个节点和一个满二叉树。

对于一个满二叉树来说总节点个数n和高度h的关系是

F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-1) = 2^h - 1。

h = log2(n + 1)

对于最后一层只有一个节点的二叉树而言总节点个数和高度h的关系是

F(n) = 2^0 + 2^1 + 2^2 + ... + 2^(h-2) + 1 = 2^(h-1) - 1 + 1= 2^(h-1)。

h = log2(n) - 1

根据大O的渐进表示法,我们可以大致得到h = logN的。

这样我们就得到了h和N之间的关系。

1.向上调整

计算向上调整的时间复杂度,我们需要计算总共向上调整了几次。

T(h) = 2^1*1 + 2^2 * 2 + ... + 2^(h-2)*(h-2) + 2^(h-1)*(h-1).
2*T(h) =       2^2*1 + 2^3 * 2 + ... +         2^(h-1)*(h-2) + 2^h*(h-1).
-T(h) = 2^1 + 2^2 + ... +2^(h-1) - 2^h*(h-1).= 2^h  - 2 -2^h*(h-1)= 2^h(1-h+1) -2 T(h) = 2 + 2 ^ h * hT(N) = 2 + 2 * log(N) * N = O(N * logN)

向上调整的时间复杂度是N*logN.

2.向下调整

T(h) = 2^0*(h-1) + 2^1*(h-2) + ...             +2^(h-2) * 1
2 * T(h) =         2^1*(h-1) + 2^2*(h-2) + ... +2^(h-2) * 2+2^(h-1) * 1
T(h) = 2^1 + 2^2+...+2^(h-2) +2^(h-1) - (h-1)= 2^h - 2 - h + 1= 2^h - h - 1= N - logN - 1= O(N)

对比不难发现向下调整的时间复杂度算法更优。 

三.TopK问题

 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
    比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素    
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

利用此算法的时间复杂度是O(N)

 

相关文章:

【数据结构】--- 堆的应用

​ 个人主页&#xff1a;星纭-CSDN博客 系列文章专栏 :数据结构 踏上取经路&#xff0c;比抵达灵山更重要&#xff01;一起努力一起进步&#xff01; 一.堆排序 在前一个文章的学习中&#xff0c;我们使用数组的物理结构构造出了逻辑结构上的堆。那么堆到底有什么用呢&…...

0基础学会在亚马逊云科技AWS上利用SageMaker、PEFT和LoRA高效微调AI大语言模型(含具体教程和代码)

项目简介&#xff1a; 小李哥今天将继续介绍亚马逊云科技AWS云计算平台上的前沿前沿AI技术解决方案&#xff0c;帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS上的AI软甲开发最佳实践&#xff0c;并应用到自己的日常工作里。本次介绍的是如何在Amazon SageMaker上…...

护网HW面试——redis利用方式即复现

参考&#xff1a;https://xz.aliyun.com/t/13071 面试中经常会问到ssrf的打法&#xff0c;讲到ssrf那么就会讲到配合打内网的redis&#xff0c;本篇就介绍redis的打法。 未授权 原理&#xff1a; Redis默认情况下&#xff0c;会绑定在0.0.0.0:6379&#xff0c;如果没有采用相关…...

C++ //练习 15.8 给出静态类型和动态类型的定义。

C Primer&#xff08;第5版&#xff09; 练习 15.8 练习 15.8 给出静态类型和动态类型的定义。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 解释 静态类型&#xff1a;在编译时已知&#xff0c;是在变量声明时的类型或表达式生成的…...

阿里云ECS服务器安装jdk并运行jar包,访问成功详解

安装 OpenJDK 8 使用 yum 包管理器安装 OpenJDK 8 sudo yum install -y java-1.8.0-openjdk-devel 验证安装 安装完成后&#xff0c;验证 JDK 是否安装成功&#xff1a; java -version设置 JAVA_HOME 环境变量&#xff1a; 为了确保系统中的其他应用程序可以找到 JDK&…...

Windows系统上使用npm来安装和配置Yarn,在VSCode中使用

一、安装Yarn 1. 安装Node.js和npm 如果还没有安装Node.js和npm&#xff0c;可以从Node.js官方网站下载并安装最新版本的Node.js&#xff0c;npm会随Node.js一起安装。 2. 使用npm安装Yarn 打开命令提示符或PowerShell&#xff0c;运行以下命令来全局安装Yarn&#xff1a; …...

Unity ColorSpace 之 【颜色空间】相关说明,以及【Linear】颜色校正 【Gamma】的简单整理

Unity ColorSpace 之 【颜色空间】相关说明&#xff0c;以及【Linear】颜色校正 【Gamma】的简单整理 目录 Unity ColorSpace 之 【颜色空间】相关说明&#xff0c;以及【Linear】颜色校正 【Gamma】的简单整理 一、简单介绍 二、在Unity中设置颜色空间 三、Unity中的Gamma…...

JavaScript的学习(二)

今天继续学习JavaScript的第二天&#xff0c;还是打基础 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title…...

【接口自动化_06课_Pytest+Excel+Allure完整框架集成】

一、logging在接口自动化里的应用 1、设置日志的配置&#xff0c;并收集日志文件 日志的设置需要在pytest.ini文件里设置。这个里面尽量不要有中文 2、debug日志的打印 pytest.ini文件的开关一定得是true才能在控制台打印日志 import allure import pytest from P06_PytestFr…...

Profibus协议转Profinet协议网关模块连接智能电表通讯案例

一、背景 在工业自动化领域&#xff0c;Profibus协议和Profinet协议是两种常见的工业通讯协议&#xff0c;而连接智能电表需要用到这两种协议之间的网关模块。本文将通过一个实际案例&#xff0c;详细介绍如何使用Profibus转Profinet模块&#xff08;XD-PNPBM20&#xff09;实…...

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(九)-无人机服务区分离

引言 本文是3GPP TR 22.829 V17.1.0技术报告&#xff0c;专注于无人机&#xff08;UAV&#xff09;在3GPP系统中的增强支持。文章提出了多个无人机应用场景&#xff0c;分析了相应的能力要求&#xff0c;并建议了新的服务级别要求和关键性能指标&#xff08;KPIs&#xff09;。…...

acrobat 中 PDF 复制时不能精确选中所选内容所在行的一种解决方法

现象&#xff1a;划取行的时候&#xff0c;自动扩展为多行 如果整段选中复制&#xff0c;粘贴后是乱码 解决步骤 识别完&#xff0c;保存 验证 可以按行复制了。 如果遇到仅使用 acrobat OCR 不能彻底解决的&#xff0c;更换其他自己熟悉的进行 OCR。...

安卓学习中遇到的问题【bug】

安卓学习中遇到的问题 1Gradle下载慢怎么办&#xff1f; Gradle下载慢怎么办&#xff1f; distributionUrlhttps://mirrors.cloud.tencent.com/gradle/gradle-7.5-bin.zip 2 Could not resolve all files for configuration ‘:classpath‘. &#xff1e; Could not resolv…...

【日常记录】【CSS】display:inline 的样式截断

文章目录 1. 案例2. css属性&#xff1a;box-decoration-break参考地址 1. 案例 现在有一篇文章&#xff0c;某些句子&#xff0c;是要被标记的&#xff0c;加一些css 让他突出一下 可以看到&#xff0c;在最后&#xff0c;断开了&#xff0c;那如若要让 断开哪里的样式 和 开始…...

数据库系统安全

数据库安全威胁 数据库作为信息系统中的核心组成部分&#xff0c;存储和管理着大量敏感和关键的数据&#xff0c;成为网络攻击者的主要目标之一。以下是常见的数据库安全威胁及其详细描述&#xff1a; 一、常见数据库安全威胁 SQL注入攻击&#xff08;SQL Injection&#xff…...

Qt MV架构-代理模型

一、基本概念 代理模型可以将一个模型中的数据进行排序或者过滤&#xff0c;然后提供给视图进行显示。 Qt中提供了QSortFilterProxyModel作为标准的代理模型来完成模型中数据的排序和过滤。 要使用一个代理模型&#xff0c;则只需要为其设置源模型&#xff0c;然后再视图中使…...

WebSocket实现群聊功能、房间隔离

引用WebSocket相关依赖 <dependency><groupId>javax.websocket</groupId><artifactId>javax.websocket-api</artifactId><version>1.1</version></dependency><dependency><groupId>org.springframework</grou…...

顶顶通呼叫中心中间件实现随时启动和停止质检(mod_cti基于FreeSWITCH)

文章目录 前言联系我们拨号方案启动停止ASR执行FreeSWITCH 命令接口启动ASR接口停止ASR接口 通知配置cti.json配置质检结果写入数据库 前言 顶顶通呼叫中心中间件的实时质检功能是由两个模块组成&#xff1a;mod_asr 和 mod_qc。 mod_asr&#xff1a;负责调用ASR将用户们在通…...

基于conda包的环境创建、激活、管理与删除

Anaconda是一个免费、易于安装的包管理器、环境管理器和 Python 发行版&#xff0c;支持平台包括Windows、macOS 和 Linux。下载安装地址&#xff1a;Download Anaconda Distribution | Anaconda 很多不同的项目可能需要使用不同的环境。例如某个项目需要使用pytorch1.6&#x…...

处理线程安全的列表CopyOnWriteArrayList 和Collections.synchronizedList

ConcurrentModificationException 是 Java 中的一种异常&#xff0c;用于指示在迭代集合时&#xff0c;该集合的结构发生了并发修改。 在 Java 中&#xff0c;许多集合类&#xff08;如 ArrayList, HashMap 等&#xff09;都不是线程安全的。如果一个线程在迭代集合的同时&…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...