当前位置: 首页 > news >正文

Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算

Mindspore框架:CycleGAN模型实现图像风格迁移算法

Mindspore框架CycleGAN模型实现图像风格迁移|(一)CycleGAN神经网络模型构建
Mindspore框架CycleGAN模型实现图像风格迁移|(二)实例数据集(苹果2橘子)
Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算
Mindspore框架CycleGAN模型实现图像风格迁移|(四)CycleGAN模型训练
Mindspore框架CycleGAN模型实现图像风格迁移|(五)CycleGAN模型推理与资源下载

1. 损失函数计算

CycleGAN 网络本质上是由两个镜像对称的 GAN 网络组成。

在这里插入图片描述
运算流程:
在这里插入图片描述

CycleGAN网络运转流程:图中苹果图片 𝑥 经过生成器 𝐺得到伪橘子 𝑌̂ ,然后将伪橘子 𝑌̂ 结果送进生成器 𝐹又产生苹果风格的结果 𝑥̂ ,最后将生成的苹果风格结果 𝑥̂ 与原苹果图片 𝑥一起计算出循环一致损失。

对生成器 𝐺 及其判别器 𝐷𝑌:
x-> 𝐺(𝑥)
目标损失函数定义为:
在这里插入图片描述
其中 𝐺试图生成看起来与 𝑌 中的图像相似的图像 𝐺(𝑥),而 𝐷𝑌的目标是区分翻译样本 𝐺(𝑥) 和真实样本 𝑦,生成器的目标是最小化这个损失函数以此来对抗判别器。即 在这里插入图片描述

对生成器G到F
x-> 𝐺(𝑥) ->F( 𝐺(𝑥))
在这里插入图片描述

这种循环损失计算,会捕捉这样的直觉,即如果我们从一个域转换到另一个域,然后再转换回来,我们应该到达我们开始的地方。

2.损失函数实现

# GAN网络损失函数,这里最后一层不使用sigmoid函数
loss_fn = nn.MSELoss(reduction='mean')
l1_loss = nn.L1Loss("mean")def gan_loss(predict, target):target = ops.ones_like(predict) * targetloss = loss_fn(predict, target)return loss

生成器网络和判别器网络的优化器:

# 构建生成器优化器
optimizer_rg_a = nn.Adam(net_rg_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_rg_b = nn.Adam(net_rg_b.trainable_params(), learning_rate=0.0002, beta1=0.5)
# 构建判别器优化器
optimizer_d_a = nn.Adam(net_d_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_d_b = nn.Adam(net_d_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

3. 模型前向计算损失的过程

import mindspore as ms# 前向计算def generator(img_a, img_b):fake_a = net_rg_b(img_b)fake_b = net_rg_a(img_a)rec_a = net_rg_b(fake_b)rec_b = net_rg_a(fake_a)identity_a = net_rg_b(img_a)identity_b = net_rg_a(img_b)return fake_a, fake_b, rec_a, rec_b, identity_a, identity_blambda_a = 10.0
lambda_b = 10.0
lambda_idt = 0.5# 生成器
def generator_forward(img_a, img_b):true = Tensor(True, dtype.bool_)fake_a, fake_b, rec_a, rec_b, identity_a, identity_b = generator(img_a, img_b)loss_g_a = gan_loss(net_d_b(fake_b), true)loss_g_b = gan_loss(net_d_a(fake_a), true)loss_c_a = l1_loss(rec_a, img_a) * lambda_aloss_c_b = l1_loss(rec_b, img_b) * lambda_bloss_idt_a = l1_loss(identity_a, img_a) * lambda_a * lambda_idtloss_idt_b = l1_loss(identity_b, img_b) * lambda_b * lambda_idtloss_g = loss_g_a + loss_g_b + loss_c_a + loss_c_b + loss_idt_a + loss_idt_breturn fake_a, fake_b, loss_g, loss_g_a, loss_g_b, loss_c_a, loss_c_b, loss_idt_a, loss_idt_bdef generator_forward_grad(img_a, img_b):_, _, loss_g, _, _, _, _, _, _ = generator_forward(img_a, img_b)return loss_g# 判别器
def discriminator_forward(img_a, img_b, fake_a, fake_b):false = Tensor(False, dtype.bool_)true = Tensor(True, dtype.bool_)d_fake_a = net_d_a(fake_a)d_img_a = net_d_a(img_a)d_fake_b = net_d_b(fake_b)d_img_b = net_d_b(img_b)loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)loss_d = (loss_d_a + loss_d_b) * 0.5return loss_ddef discriminator_forward_a(img_a, fake_a):false = Tensor(False, dtype.bool_)true = Tensor(True, dtype.bool_)d_fake_a = net_d_a(fake_a)d_img_a = net_d_a(img_a)loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)return loss_d_adef discriminator_forward_b(img_b, fake_b):false = Tensor(False, dtype.bool_)true = Tensor(True, dtype.bool_)d_fake_b = net_d_b(fake_b)d_img_b = net_d_b(img_b)loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)return loss_d_b# 保留了一个图像缓冲区,用来存储之前创建的50个图像
pool_size = 50
def image_pool(images):num_imgs = 0image1 = []if isinstance(images, Tensor):images = images.asnumpy()return_images = []for image in images:if num_imgs < pool_size:num_imgs = num_imgs + 1image1.append(image)return_images.append(image)else:if random.uniform(0, 1) > 0.5:random_id = random.randint(0, pool_size - 1)tmp = image1[random_id].copy()image1[random_id] = imagereturn_images.append(tmp)else:return_images.append(image)output = Tensor(return_images, ms.float32)if output.ndim != 4:raise ValueError("img should be 4d, but get shape {}".format(output.shape))return output

4.计算梯度和反向传播

from mindspore import value_and_grad# 实例化求梯度的方法
grad_g_a = value_and_grad(generator_forward_grad, None, net_rg_a.trainable_params())
grad_g_b = value_and_grad(generator_forward_grad, None, net_rg_b.trainable_params())grad_d_a = value_and_grad(discriminator_forward_a, None, net_d_a.trainable_params())
grad_d_b = value_and_grad(discriminator_forward_b, None, net_d_b.trainable_params())# 计算生成器的梯度,反向传播更新参数
def train_step_g(img_a, img_b):net_d_a.set_grad(False)net_d_b.set_grad(False)fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib = generator_forward(img_a, img_b)_, grads_g_a = grad_g_a(img_a, img_b)_, grads_g_b = grad_g_b(img_a, img_b)optimizer_rg_a(grads_g_a)optimizer_rg_b(grads_g_b)return fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib# 计算判别器的梯度,反向传播更新参数
def train_step_d(img_a, img_b, fake_a, fake_b):net_d_a.set_grad(True)net_d_b.set_grad(True)loss_d_a, grads_d_a = grad_d_a(img_a, fake_a)loss_d_b, grads_d_b = grad_d_b(img_b, fake_b)loss_d = (loss_d_a + loss_d_b) * 0.5optimizer_d_a(grads_d_a)optimizer_d_b(grads_d_b)return loss_d

相关文章:

Mindspore框架CycleGAN模型实现图像风格迁移|(三)损失函数计算

Mindspore框架&#xff1a;CycleGAN模型实现图像风格迁移算法 Mindspore框架CycleGAN模型实现图像风格迁移|&#xff08;一&#xff09;CycleGAN神经网络模型构建 Mindspore框架CycleGAN模型实现图像风格迁移|&#xff08;二&#xff09;实例数据集&#xff08;苹果2橘子&…...

ENSP中VLAN的设置

VLAN的详细介绍 VLAN&#xff08;Virtual Local Area Network&#xff09;即虚拟局域网&#xff0c;是一种将一个物理的局域网在逻辑上划分成多个广播域的技术。 以下是关于 VLAN 的一些详细介绍&#xff1a; 一、基本概念 1. 作用&#xff1a; - 隔离广播域&#xff1a…...

《后端程序员 · Nacos 常见配置 · 第一弹》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

深入解析HTTPS与HTTP

在当今数字化时代&#xff0c;网络安全已成为社会各界关注的焦点。随着互联网技术的飞速发展&#xff0c;个人和企业的数据安全问题日益凸显。在此背景下&#xff0c;HTTPS作为一种更加安全的通信协议&#xff0c;逐渐取代了传统的HTTP协议&#xff0c;成为保护网络安全的重要屏…...

vue3+TS从0到1手撸后台管理系统

1.路由配置 1.1路由组件的雏形 src\views\home\index.vue&#xff08;以home组件为例&#xff09; 1.2路由配置 1.2.1路由index文件 src\router\index.ts //通过vue-router插件实现模板路由配置 import { createRouter, createWebHashHistory } from vue-router import …...

黑马头条-环境搭建、SpringCloud

一、项目介绍 1. 项目背景介绍 项目概述 类似于今日头条&#xff0c;是一个新闻资讯类项目。 随着智能手机的普及&#xff0c;人们更加习惯于通过手机来看新闻。由于生活节奏的加快&#xff0c;很多人只能利用碎片时间来获取信息&#xff0c;因此&#xff0c;对于移动资讯客…...

基于centos2009搭建openstack-t版-ovs网络-脚本运行

openstackT版脚本 环境变量ip初始化 controlleriaas-pre.shiaas-install-mysql.shiaas-install-keystone.shiaas-install-glance.shiaas-install-placement.shiaas-install-nova-controller.shiaas-install-neutron-controller.shiaas-install-dashboard.sh computeiaas-instal…...

buuctf-web

查看后端源码 得到base64编码&#xff0c;解码得flag...

UBUNTU22 安装QT5.15.2 记录

安装QT预置安装软件包 sudo apt install gcc sudo apt install g sudo apt install clang sudo apt install clang sudo apt install make sudo snap install cmake --classic sudo apt-get install build-essential sudo apt install libxcb-xinerama0 #安装OpenGL核心库 su…...

C++基础知识:C++内存分区模型,全局变量和静态变量以及常量,常量区,字符串常量和其他常量,栈区,堆区,代码区和全局区

1.C内存分区模型 C程序在执行时&#xff0c;将内存大方向划分为4个区域 代码区:存放函数体的二进制代码&#xff0c;由操作系统进行管理的&#xff08;在编译器中所书写的代码都会存放在这个空间。&#xff09; 全局区:存放全局变量和静态变量以及常量 栈区:由编译器自动分…...

MySQL面试题-重难点

mysql中有哪些锁&#xff1f;举出所有例子&#xff0c;各个锁的作用是什么&#xff1f;区别是什么&#xff1f; 共享锁&#xff1a;也叫读锁&#xff0c;简称S锁&#xff0c;在事务要读取一条记录时&#xff0c;先获取该记录的S锁&#xff0c;别的事务也可以继续获取该记录的S…...

【Linux杂货铺】期末总结篇3:用户账户管理命令 | 组账户管理命令

&#x1f308;个人主页&#xff1a;聆风吟_ &#x1f525;系列专栏&#xff1a;Linux杂货铺、Linux实践室 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 第五章5.1 ⛳️Linux 账户5.2 ⛳️用户配置文件和目录&#xff08;未完待续&#xff09;5.2.1 …...

基于STM32设计的超声波测距仪(微信小程序)(186)

基于STM32设计的超声波测距仪(微信小程序)(186) 文章目录 一、前言1.1 项目介绍【1】项目功能介绍【2】项目硬件模块组成1.2 设计思路【1】整体设计思路【2】ESP8266工作模式配置1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献1.4 开发工具的选择1.5 系统框架图…...

Web前端-Web开发HTML基础2-list

一. 基础 1. 写一个列表标签&#xff0c;生成一个有三条记录的无序列表&#xff1b; 2. 写一个列表标签&#xff0c;生成一个有四条记录的无序列表&#xff1b; 3. 写一个列表标签&#xff0c;生成一个有五条记录的无序列表&#xff1b; 4. 写一个列表标签&#xff0c;生成一个…...

MAVSDK-Java安卓客户端编译与使用完整示例

效果&#xff1a; 1.启动PX4容器 2.监听QGC连接端口 3.手机与QGC连接到同一局域网&#xff08;此例QGC为&#xff1a;192.168.6.250 手机为&#xff1a;192.168.6.86&#xff09; 4.监听手机mavsdk_server连接端口 5.使用Android Studio打开MAVSDK-JAVA下的examples/android-c…...

JavaEE:Spring Web简单小项目实践二(用户登录实现)

学习目的&#xff1a; 1、理解前后端交互过程 2、学习接口传参&#xff0c;数据返回以及页面展示 1、准备工作 创建SpringBoot项目&#xff0c;引入Spring Web依赖&#xff0c;添加前端页面到项目中。 前端代码&#xff1a; login.html <!DOCTYPE html> <html lang&…...

深度学习 | CNN 基本原理

目录 1 什么是 CNN2 输入层3 卷积层3.1 卷积操作3.2 Padding 零填充3.3 处理彩色图像 4 池化层4.1 池化操作4.2 池化的平移不变性 5 全连接层6 输出层 前言 这篇博客不够详细&#xff0c;因为没有介绍卷积操作的具体计算&#xff1b;但是它介绍了 CNN 各层次的功能…...

解读|http和https的区别,谁更好用

在日常我们浏览网页时&#xff0c;有些网站会看到www前面是http&#xff0c;有些是https&#xff0c;这两种有什么区别呢&#xff1f;为什么单单多了“s”&#xff0c;会有人说这个网页会更安全些&#xff1f; HTTP&#xff08;超文本传输协议&#xff09;和HTTPS&#xff08;…...

汽车零部件制造企业MES系统主要功能介绍

随着汽车工业的不断发展&#xff0c;汽车零部件制造企业面临着越来越高的生产效率、质量控制和成本管理要求。MES系统作为一种综合信息系统&#xff0c;能够帮助企业实现从订单接收到产品交付的全流程数字化管理&#xff0c;优化资源配置&#xff0c;提高生产效率&#xff0c;确…...

常见的五种聚类算法总结

常见的聚类算法总结 1. K-Means 聚类 描述 K-Means 是一种迭代优化的聚类算法&#xff0c;它通过最小化样本点到质心的距离平方和来进行聚类。 思想 随机选择 K 个初始质心。分配每个数据点到最近的质心&#xff0c;形成 K 个簇。重新计算每个簇的质心。重复上述步骤&…...

智能车存在网络安全隐患,如何应设计出更好的安全防护技术?

智能车网络安全防护技术的研究与设计 摘要&#xff1a;随着智能车技术的迅速发展&#xff0c;车辆的网络连接性不断增强&#xff0c;然而这也带来了诸多网络安全隐患。本文深入探讨了智能车面临的网络安全威胁&#xff0c;并提出了一系列创新的安全防护技术设计&#xff0c;旨…...

通讯的概念

通讯的概念 文章目录 通讯的概念1.通讯的基本概念2. 串行通讯与并行通讯2. 全双工、半双工及单工通讯3. 同步通讯与异步通讯4. 通讯速率 1.通讯的基本概念 通讯是指在嵌入式系统中实现数据交换的技术手段&#xff0c;它涉及到硬件与硬件、硬件与软件之间的信息传输。基本概念包…...

Centos7 rpm 安装 Mysql 8.0.28

Centos7 rpm 安装 Mysql 8.0.28 一、检查系统是否已经安装了Mysql 如果安装了则卸载 [rootiZbp1byzaznzn9jncxr010Z /]# rpm -qa | grep mysql[rootiZbp1byzaznzn9jncxr010Z /]# rpm -qa | grep mariadb mariadb-libs-5.5.68-1.el7.x86_64如果安装了 mysql &#xff0c;maria…...

Linux 多进程编程详解

Linux 多进程编程详解 多进程编程是现代操作系统中一种重要的并发编程技术。通过在同一程序中运行多个独立的进程&#xff0c;可以实现并发处理&#xff0c;充分利用多核处理器的优势&#xff0c;提高程序的运行效率。本文将详细介绍Linux多进程的基本概念、创建方法、进程间通…...

C语言之大小端理解

目录 1前言2 大小端理解与区分3 大小端的识别和基本切换操作4 总结 1前言 在汽车CAN通讯报文中往往会接触到Intel类型和motorola类型&#xff0c;实际项目中涉及到多机通讯也会接触到大小端问题 2 大小端理解与区分 大端(Big_Endian) :低字节放在高地址小端(Little_Endian):…...

GIT相关操作,推送本地分支到远程仓库流程记录学习

git流程 切换到源文件夹&#xff1a;cd 源文件夹克隆远程仓库&#xff1a;git clone [ssh]进入项目文件夹&#xff1a;cd .\project\查看本地分支&#xff1a;git branch获取远程仓库更新&#xff0c;使远程同步&#xff1a;git fetch查看所有分支&#xff08;包括远程分支&am…...

网络协议 — Keepalived 高可用方案

目录 文章目录 目录Keepalived 是实现了 VRRP 协议的软件Keepalived 的软件架构VRRP StackCheckersKeepalived 的配置Global configurationvrrp_scriptVRRP Configurationvrrp synchroization groupvrrp instancevirtual ip addressesvirtual routesLVS Configurationvirtual_s…...

前端报错adding CSS “touch-action: none“ to this element解决方案

目录 如图所示控制台出现报错&#xff1a; 原因&#xff1a; touch-action 介绍&#xff1a; 解决方案&#xff1a; 1.手动设置touch-action&#xff1a; 2.使用条件渲染&#xff1a; 3.CSS样式隔离&#xff1a; 4.浏览器兼容性&#xff1a; 5. 忽略警告 如图所示控制台…...

使用phpMyAdmin操作MYSQL(四)

一. 学会phpMyAdmin&#xff1f; phpMyAdminhttp://water.ve-techsz.cn/phpmyadmin/ 虽然我我们可以用命令行操作数据库&#xff0c;但这样难免没有那么直观&#xff0c;方便。所以接下来我们使用phpMyAdmin来操作MySQL&#xff0c;phpMyAdmin是众多MySQL图形化管理工具中使用…...

webpack配置代理请求

在 Webpack 中&#xff0c;可以通过配置devServer中的proxy选项来设置代理请求&#xff0c;以解决开发环境中的跨域问题或实现特定的请求转发逻辑。以下是一个常见的 Webpack 配置示例&#xff0c;展示了如何设置代理&#xff1a; module.exports {// 其他配置项...devServer…...