当前位置: 首页 > news >正文

微软GraphRAG +本地模型+Gradio 简单测试笔记

安装

pip install graphragmkdir -p ./ragtest/input#将文档拷贝至  ./ragtest/input/  下python -m graphrag.index --init --root ./ragtest

修改settings.yaml


encoding_model: cl100k_base
skip_workflows: []
llm:api_key: ${GRAPHRAG_API_KEY}type: openai_chat # or azure_openai_chatmodel: qwen2-instructmodel_supports_json: true # recommended if this is available for your model.# max_tokens: 4000# request_timeout: 180.0api_base: http://192.168.2.2:9997/v1/# api_version: 2024-02-15-preview# organization: <organization_id># deployment_name: <azure_model_deployment_name># tokens_per_minute: 150_000 # set a leaky bucket throttle# requests_per_minute: 10_000 # set a leaky bucket throttle# max_retries: 10# max_retry_wait: 10.0# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-timesconcurrent_requests: 5 # the number of parallel inflight requests that may be madeparallelization:stagger: 0.3# num_threads: 50 # the number of threads to use for parallel processingasync_mode: threaded # or asyncioembeddings:## parallelization: override the global parallelization settings for embeddingsasync_mode: threaded # or asynciollm:api_key: ${GRAPHRAG_API_KEY}type: openai_embedding # or azure_openai_embeddingmodel: bge-large-zh-v1.5api_base: http://127.0.0.1:9997/v1/# api_version: 2024-02-15-preview# organization: <organization_id># deployment_name: <azure_model_deployment_name># tokens_per_minute: 150_000 # set a leaky bucket throttle# requests_per_minute: 10_000 # set a leaky bucket throttle# max_retries: 10# max_retry_wait: 10.0# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times# concurrent_requests: 25 # the number of parallel inflight requests that may be made# batch_size: 16 # the number of documents to send in a single request# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request# target: required # or optionalchunks:size: 300overlap: 100group_by_columns: [id] # by default, we don't allow chunks to cross documentsinput:type: file # or blobfile_type: text # or csvbase_dir: "input"file_encoding: utf-8file_pattern: ".*\\.txt$"cache:type: file # or blobbase_dir: "cache"# connection_string: <azure_blob_storage_connection_string># container_name: <azure_blob_storage_container_name>storage:type: file # or blobbase_dir: "output/${timestamp}/artifacts"# connection_string: <azure_blob_storage_connection_string># container_name: <azure_blob_storage_container_name>reporting:type: file # or console, blobbase_dir: "output/${timestamp}/reports"# connection_string: <azure_blob_storage_connection_string># container_name: <azure_blob_storage_container_name>entity_extraction:## llm: override the global llm settings for this task## parallelization: override the global parallelization settings for this task## async_mode: override the global async_mode settings for this taskprompt: "prompts/entity_extraction.txt"entity_types: [organization,person,geo,event]max_gleanings: 0summarize_descriptions:## llm: override the global llm settings for this task## parallelization: override the global parallelization settings for this task## async_mode: override the global async_mode settings for this taskprompt: "prompts/summarize_descriptions.txt"max_length: 500claim_extraction:## llm: override the global llm settings for this task## parallelization: override the global parallelization settings for this task## async_mode: override the global async_mode settings for this task# enabled: trueprompt: "prompts/claim_extraction.txt"description: "Any claims or facts that could be relevant to information discovery."max_gleanings: 0community_report:## llm: override the global llm settings for this task## parallelization: override the global parallelization settings for this task## async_mode: override the global async_mode settings for this taskprompt: "prompts/community_report.txt"max_length: 2000max_input_length: 8000cluster_graph:max_cluster_size: 10embed_graph:enabled: false # if true, will generate node2vec embeddings for nodes# num_walks: 10# walk_length: 40# window_size: 2# iterations: 3# random_seed: 597832umap:enabled: false # if true, will generate UMAP embeddings for nodessnapshots:graphml: falseraw_entities: falsetop_level_nodes: falselocal_search:# text_unit_prop: 0.5# community_prop: 0.1# conversation_history_max_turns: 5# top_k_mapped_entities: 10# top_k_relationships: 10# max_tokens: 12000global_search:# max_tokens: 12000# data_max_tokens: 12000# map_max_tokens: 1000# reduce_max_tokens: 2000# concurrency: 32

LLM模型 :Qwen2-72B-Instruct
EMBEDDING模型:  bge-large-zh-v1.5

本地部署模型使用的Xinference

生成索引 图谱

python -m graphrag.index --root ./ragtest

成功界面

全局查询和本地查询

python -m graphrag.query \
--root ./ragtest \
--method global \
"你的问题"python -m graphrag.query \
--root ./ragtest \
--method local \
"你的问题"

gradio 代码

import sys
import shleximport gradio as gr
import subprocessdef parse_text(text):lines = text.split("\n")lines = [line for line in lines if line != ""]count = 0for i, line in enumerate(lines):if "```" in line:count += 1items = line.split('`')if count % 2 == 1:lines[i] = f'<pre><code class="language-{items[-1]}">'else:lines[i] = f'<br></code></pre>'else:if i > 0:if count % 2 == 1:line = line.replace("`", "\`")line = line.replace("<", "&lt;")line = line.replace(">", "&gt;")line = line.replace(" ", "&nbsp;")line = line.replace("*", "&ast;")line = line.replace("_", "&lowbar;")line = line.replace("-", "&#45;")line = line.replace(".", "&#46;")line = line.replace("!", "&#33;")line = line.replace("(", "&#40;")line = line.replace(")", "&#41;")line = line.replace("$", "&#36;")lines[i] = "<br>" + linetext = "".join(lines)return textdef predict(history):messages = []for idx, (user_msg, model_msg) in enumerate(history):if idx == len(history) - 1 and not model_msg:messages.append({"role": "user", "content": user_msg})breakif user_msg:messages.append({"role": "user", "content": user_msg})if model_msg:messages.append({"role": "assistant", "content": model_msg})messages = messages[len(messages) - 1]["content"]print("\n\n====conversation====\n", messages)python_path = sys.executable# 构建命令cmd = [python_path, "-m", "graphrag.query","--root", "./ragtest","--method", "local",]# 安全地添加查询到命令中cmd.append(shlex.quote(messages))try:result = subprocess.run(cmd, capture_output=True, text=True, check=True, encoding='utf-8')output = result.stdoutif output:# 提取 "SUCCESS: Local Search Response:" 之后的内容response = output.split("SUCCESS: Local Search Response:", 1)[-1]history[-1][1] += response.strip()yield historyelse:history[-1][1] += "None"yield historyexcept subprocess.CalledProcessError as e:print(e)with gr.Blocks() as demo:gr.HTML("""<h1 align="center">GraphRAG 测试</h1>""")chatbot = gr.Chatbot(height=600)with gr.Row():with gr.Column(scale=4):with gr.Column(scale=12):user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)with gr.Column(min_width=32, scale=1):submitBtn = gr.Button("Submit")def user(query, history):return "", history + [[parse_text(query), ""]]submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(predict, [chatbot], chatbot)demo.queue()
demo.launch(server_name="0.0.0.0", server_port=9901, inbrowser=True, share=False)

不知道是不是受限于模型能力 还是自己操作问题,个人感觉效果一般 

相关文章:

微软GraphRAG +本地模型+Gradio 简单测试笔记

安装 pip install graphragmkdir -p ./ragtest/input#将文档拷贝至 ./ragtest/input/ 下python -m graphrag.index --init --root ./ragtest修改settings.yaml encoding_model: cl100k_base skip_workflows: [] llm:api_key: ${GRAPHRAG_API_KEY}type: openai_chat # or azu…...

数学建模-Topsis(优劣解距离法)

介绍 TOPSIS法&#xff08;Technique for Order Preference by Similarity to Ideal Solution&#xff09; 可翻译为逼近理想解排序法&#xff0c;国内常简称为优劣解距离法 TOPSIS 法是一种常用的综合评价方法&#xff0c;其能充分利用原始数据的信息&#xff0c; 其结果能精…...

嵌入式linux相机 转换模块

convert_manager.c #include <config.h> #include <convert_manager.h> #include <string.h>static PT_VideoConvert g_ptVideoConvertHead NULL;/*********************************************************************** 函数名称&#xff1a; Register…...

【自学安全防御】二、防火墙NAT智能选路综合实验

任务要求&#xff1a; &#xff08;衔接上一个实验所以从第七点开始&#xff0c;但与上一个实验关系不大&#xff09; 7&#xff0c;办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 8&#xff0c;分公司设备可以通过总…...

【Android】传给后端的Url地址被转码问题处理

一、问题 为什么使用Gson().toJson的时候&#xff0c;字符串中的会被转成\u003d 在 Gson 中&#xff0c;默认情况下会对某些特殊字符进行 HTML 转义&#xff0c;以确保生成的 JSON 字符串在 HTML 中是安全的。因此&#xff0c;字符 会被转义为 \u003d。你可以通过禁用 HTML 转…...

1.厦门面试

1.Vue的生命周期阶段 vue生命周期分为四个阶段 第一阶段&#xff08;创建阶段&#xff09;&#xff1a;beforeCreate&#xff0c;created 第二阶段&#xff08;挂载阶段&#xff09;&#xff1a;beforeMount&#xff08;render&#xff09;&#xff0c;mounted 第三阶段&#…...

设计模式使用场景实现示例及优缺点(行为型模式——状态模式)

在一个遥远的国度中&#xff0c;有一个被称为“变幻之城”的神奇城堡。这座城堡有一种特殊的魔法&#xff0c;能够随着王国的需求改变自己的形态和功能。这种神奇的变化是由一个古老的机制控制的&#xff0c;那就是传说中的“状态宝石”。 在变幻之城中&#xff0c;有四颗宝石&…...

抖音短视频seo矩阵系统源码(搭建技术开发分享)

#抖音矩阵系统源码开发 #短视频矩阵系统源码开发 #短视频seo源码开发 一、 抖音短视频seo矩阵系统源码开发&#xff0c;需要掌握以下技术&#xff1a; 网络编程&#xff1a;能够使用Python、Java或其他编程语言进行网络编程&#xff0c;比如使用爬虫技术从抖音平台获取数据。…...

基于 asp.net家庭财务管理系统设计与实现

博主介绍&#xff1a;专注于Java .net php phython 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设&#xff0c;从业十五余年开发设计教学工作 ☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找不到哟 我的博客空间发布了1000毕设题目 方便大家学习使用感兴趣的可以先…...

allure_pytest:AttributeError: ‘str‘ object has no attribute ‘iter_parents‘

踩坑记录 问题描述&#xff1a; 接口自动化测试时出现报错&#xff0c;报错文件是allure_pytest库 问题分析&#xff1a; 自动化测试框架是比较成熟的代码&#xff0c;报错也不是自己写的文件&#xff0c;而是第三方库&#xff0c;首先推测是allure_pytest和某些库有版本不兼…...

C语言 反转链表

题目链接:https://leetcode.cn/problems/reverse-linked-list/description/?envTypestudy-plan-v2&envIdselected-coding-interview 完整代码: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/// 反转链表…...

MFC CRectTracker 类用法详解

CRectTracker 类并非 Microsoft Foundation Class (MFC) 库中应用很广泛的一个类&#xff0c;一般教科书中很少有提到。在编程中如果需编写选择框绘制以及选择框大小调整、移动等程序时&#xff0c;用CRectTracker 类就会做到事半而功倍。下面详细介绍MFC CRectTracker 类。 M…...

好玩的调度技术-场景编辑器

好玩的调度技术-场景编辑器 文章目录 好玩的调度技术-场景编辑器前言一、演示一、代码总结好玩系列 前言 这两天写前端写上瘾了&#xff0c;顺手做了个好玩的东西&#xff0c;好玩系列也好久没更新&#xff0c;正好作为素材写一篇文章&#xff0c;我真的觉得蛮好玩的&#xff…...

提高自动化测试脚本编写效率 5大关键注意事项

提高自动化测试脚本编写效率能加速测试周期&#xff0c;减少人工错误&#xff0c;提升软件质量&#xff0c;促进项目按时交付&#xff0c;增强团队生产力和项目成功率。而自动化测试脚本编写效率低下&#xff0c;往往会导致测试周期延长&#xff0c;增加项目成本&#xff0c;延…...

护眼落地灯哪个更护眼?2024年度最值得入手的5款护眼大路灯推荐

落地灯和台灯哪个更护眼&#xff1f;之所以我们眼睛经常酸痛&#xff0c;很大部分的原因是因为我们长时间在不良光线下&#xff0c;将注意力集中在屏幕或书本上会导致眼睛肌肉过度使用&#xff0c;引发疲劳和酸痛。但也不排除不正确的坐姿或者工作环境缺乏适当的照明引起的&…...

DP讨论——适配器、桥接、代理、装饰器模式通用理解

学而时习之&#xff0c;温故而知新。 共性 适配器、桥接、代理和装饰器模式&#xff0c;实现上基本没啥区别&#xff0c;怎么区分&#xff1f;只能从上下文理解&#xff0c;看目的是啥。 它们&#xff0c;我左看上看下看右看&#xff0c;发现理解可以这么简单:都是A类调用B/…...

Apache AGE的MATCH子句

MATCH子句允许您在数据库中指定查询将搜索的模式。这是检索数据以在查询中使用的主要方法。 通常在MATCH子句之后会跟随一个WHERE子句&#xff0c;以添加用户定义的限制条件到匹配的模式中&#xff0c;以操纵返回的数据集。谓词是模式描述的一部分&#xff0c;不应被视为仅在匹…...

Netty Websocket

一、WebSocket 协议概述 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务端主动向客户端推送数据&#xff0c;从而实现了实时通信。WebSocket 建立在 HTTP 之上&#xff0c;但与 HTTP 的轮询&#xff08;Polling&#xff09;和长轮询&#xff08;Long Pol…...

用户注册业务逻辑、接口设计和实现、前端逻辑

一、用户注册业务逻辑分析 二、用户注册接口设计和定义 2.1. 设计接口基本思路 对于接口的设计&#xff0c;我们要根据具体的业务逻辑&#xff0c;设计出适合业务逻辑的接口。设计接口的思路&#xff1a; 分析要实现的业务逻辑&#xff1a; 明确在这个业务中涉及到几个相关子…...

ubuntu搭建harbor私仓

1、环境准备 链接: https://pan.baidu.com/s/1q4XBWPd8WdyEn4l253mpUw 提取码: 7ekx --来自百度网盘超级会员v2的分享 准备一台Ubuntu 机器:192.168.124.165 将上面两个文件考入Ubuntu上面 2、安装harbor 安装Docker Harbor仓库以容器方式运行,需要先安装好docker,参考:…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

DBLP数据库是什么?

DBLP&#xff08;Digital Bibliography & Library Project&#xff09;Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高&#xff0c;数据库文献更新速度很快&#xff0c;很好地反映了国际计算机科学学术研…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...