当前位置: 首页 > news >正文

【机器学习】使用Python的dlib库实现人脸识别技术

在这里插入图片描述

🔥 个人主页:空白诗

在这里插入图片描述

文章目录

    • 一、引言
    • 二、传统人脸识别技术
      • 1. 基于几何特征的方法
      • 2. 基于模板匹配的方法
      • 3. 基于统计学习的方法
    • 三、深度学习在脸识别中的应用
      • 1. 卷积神经网络(CNN)
      • 2. FaceNet和ArcFace
    • 四、使用Python和dlib库实现人脸识别
      • 1. 安装必要的库
      • 2. 下载模型文件
      • 3. 人脸检测与识别代码
      • 4. 实现效果
    • 五、总结

在这里插入图片描述


一、引言

人脸识别技术已经成为现代技术的重要组成部分,被广泛应用于安全监控、身份验证、智能门禁等领域。

随着机器学习和深度学习技术的发展,人脸识别的准确性和应用范围得到了极大提升。本文将介绍人脸识别技术的发展历程,并展示如何使用Python和dlib库实现简单的人脸识别。


二、传统人脸识别技术

1. 基于几何特征的方法

  • 传统的人脸识别方法主要依赖于几何特征,如眼距、鼻长等,通过分析这些特征进行人脸识别。
  • 这些方法受限于光线、角度等外界因素的影响,识别精度较低。

2. 基于模板匹配的方法

  • 模板匹配方法通过预先存储的人脸模板与待识别的人脸图像进行匹配。
  • 虽然实现简单,但对表情、姿态变化不够鲁棒。

3. 基于统计学习的方法

  • 主成分分析(PCA)和线性判别分析(LDA)是早期常用的统计学习方法,通过降低图像的维度来实现人脸识别。
  • 这些方法提高了识别精度,但仍无法应对复杂的场景变化。

三、深度学习在脸识别中的应用

在这里插入图片描述

随着深度学习的兴起,人脸识别技术取得了突破性进展。卷积神经网络(CNN)成为了人脸识别的主要工具。

1. 卷积神经网络(CNN)

  • CNN通过层层卷积操作,从图像中提取出高层次的特征,使得人脸识别更加准确和鲁棒。
  • 经典模型如LeNet、AlexNet、VGG、ResNet等在图像识别任务中表现优异。

2. FaceNet和ArcFace

  • FaceNet通过深度神经网络将人脸图像嵌入到一个欧氏空间中,使得同一人的人脸特征距离更近。
  • ArcFace进一步优化了损失函数,使得人脸识别的准确性得到了显著提升。

四、使用Python和dlib库实现人脸识别

接下来,我们将展示如何使用Python和dlib库实现简单的人脸识别。

1. 安装必要的库

pip install opencv-python dlib

2. 下载模型文件

  • 下载 shape_predictor_68_face_landmarks.dat:下载链接
  • 下载 dlib_face_recognition_resnet_model_v1.dat:下载链接

下载并解压这两个文件并放置到项目文件目录

3. 人脸检测与识别代码

import cv2
import dlib# 加载dlib人脸检测器
detector = dlib.get_frontal_face_detector()
# 加载dlib人脸特征提取器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 加载人脸识别模型
face_rec_model = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")# 加载人脸图像并转换为灰度图
img = cv2.imread("此处改为需要进行识别的图")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 检测人脸
faces = detector(gray)for face in faces:# 提取人脸特征点shape = predictor(gray, face)# 计算人脸特征向量face_descriptor = face_rec_model.compute_face_descriptor(img, shape)# 在图像中标记人脸cv2.rectangle(img, (face.left(), face.top()), (face.right(), face.bottom()), (0, 255, 0), 2)# 显示图像
cv2.imshow("Face Recognition", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. 实现效果

在这里插入图片描述


五、总结

人脸识别技术从传统的几何特征和模板匹配方法,发展到如今基于深度学习的高精度识别,经历了巨大的演变。通过使用Python和dlib库,我们可以轻松实现高效的人脸识别系统。未来,随着技术的不断进步,人脸识别将在更多领域展现其潜力和应用价值。


相关文章:

【机器学习】使用Python的dlib库实现人脸识别技术

🔥 个人主页:空白诗 文章目录 一、引言二、传统人脸识别技术1. 基于几何特征的方法2. 基于模板匹配的方法3. 基于统计学习的方法 三、深度学习在脸识别中的应用1. 卷积神经网络(CNN)2. FaceNet和ArcFace 四、使用Python和dlib库实…...

GitHub 令牌泄漏, Python 核心资源库面临潜在攻击

TheHackerNews网站消息,软件供应链安全公司 JFrog 的网络安全研究人员称,他们发现了一个意外泄露的 GitHub 令牌,可授予 Python 语言 GitHub 存储库、Python 软件包索引(PyPI)和 Python 软件基金会(PSF&…...

【面试题】Golang 锁的相关问题(第七篇)

目录 1.Mutex 几种状态 1. 锁定状态(Locked) 2. 未锁定状态(Unlocked) 3. 唤醒状态(Woken) 4. 饥饿状态(Starving) 5. 等待者计数(Waiters Count) 总结…...

深入剖析CommonJS modules和ECMAScript modules

目录 前言CommonJS:服务器端模块化的先驱背景与起源语法与机制 ECMAScript Modules:现代前端的基石背景与起源语法与机制 比较与权衡语法差异加载机制编译时与运行时运行时行为构建第三方库现代开发环境 结论 前言 在 JavaScript 生态系统中&#xff0c…...

角点检测及MATLAB实现

一、角点简介 角点通常指的是两条直线构成角时的交点。‌在更广泛的应用中,‌角点这一概念也被扩展到数字图像处理领域,‌其中角点被定义为图像中物体轮廓线的连接点,‌这些点在某方面属性特别突出,‌即在某些属性上强度最大或者最…...

TypeScript导学:从零开始

引言 TypeScript的背景 TypeScript是一种由微软开发的开源编程语言,它是JavaScript的一个超集,添加了可选的静态类型和基于类的面向对象编程。自2012年首次发布以来,TypeScript因其能够提高代码的可读性、可维护性和可扩展性而迅速获得了广…...

【BUG】已解决:IndexError: list index out of range

已解决:IndexError: list index out of range 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班出身,就职于医疗科技公司,热衷分享知识,武汉城市开发者社区主…...

AWS-S3实现Minio分片上传、断点续传、秒传、分片下载、暂停下载

文章目录 前言一、功能展示上传功能点下载功能点效果展示 二、思路流程上传流程下载流程 三、代码示例四、疑问 前言 Amazon Simple Storage Service(S3),简单存储服务,是一个公开的云存储服务。Web应用程序开发人员可以使用它存…...

Selenium - 设置元素等待及加载策略

7月18日资源分享: 耿直哥三部曲全——机器学习,强化学习,深度学习 链接: https://pan.baidu.com/s/1c_eVVeqCZmB6zszHt6ZXiw?pwdtf2a 在使用Selenium进行网页自动化测试时,一个常见的问题是页面加载速度和元素的可见性问题。…...

【数据结构】线性结构——数组、链表、栈和队列

目录 前言 一、数组(Array) 1.1优点 1.2缺点 1.3适用场景 二、链表(Linked List) 2.1优点 2.2缺点 2.3适用场景 三、栈(Stack) 3.1优点 3.2缺点 3.3适用场景 四、队列(Queue) 4.1优点…...

json将列表字典等转字符串,然后解析又转回来

在 Python 中使用 json 模块来方便地在数据和 JSON 格式字符串之间进行转换,以便进行数据的存储、传输或与其他支持 JSON 格式的系统进行交互。 JSON 字符串通过 json.loads() 函数转换为 Python 对象。 pthon对象通过json.dumps()转为字符串 import jsonstr_list…...

记录|.NET上位机开发和PLC通信的实现

本文记录源自:B站视频 实验结果:跟视频做下来是没有问题的。能运行。 自己补充做了视频中未实现的读取和写入数据部分【欢迎小伙伴指正不对的地方】 目录 前言一、项目Step1. 创建项目Step2. 创建动态图片展示Step3. 创建图片型按钮Step4. 创建下拉框Ste…...

微服务实战系列之玩转Docker(二)

前言 上一篇,博主对Docker的背景、理念和实现路径进行了简单的阐述。作为云原生技术的核心之一,轻量级的容器Docker,受到业界追捧。因为它抛弃了笨重的OS,也不带Data,可以说,能够留下来的都是打仗的“精锐…...

Linux:信号的概念与产生

信号概念 信号是进程之间事件异步通知的一种方式 在Linux命令行中,我们可以通过ctrl c来终止一个前台运行的进程,其实这就是一个发送信号的行为。我们按下ctrl c是在shell进程中,而被终止的进程,是在前台运行的另外一个进程。因…...

云监控(华为) | 实训学习day2(10)

spring boot基于框架的实现 简单应用 - 用户数据显示 开发步骤 第一步:文件-----》新建---项目 第二步:弹出的对话框中,左侧选择maven,右侧不选任何内容. 第三步,选择maven后,下一步 第4步 :出现对话框中填写项目名称 第5步&…...

数据结构第35节 性能优化 算法的选择

算法的选择对于优化程序性能至关重要。不同的算法在时间复杂度、空间复杂度以及适用场景上有着明显的差异。下面我将结合具体的代码示例,来讲解几种常见的算法选择及其优化方法。 示例 1: 排序算法 场景描述: 假设我们需要对一个整数数组进行排序。 算法选择: …...

每天一个数据分析题(四百三十六)- 正态分布

X为服从正态分布的随机变量N(2, 9), 如果P(X>c)P(X<c), 则c的值为&#xff08;&#xff09; A. 3 B. 2 C. 9 D. 2/3 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python&#xff0c;SQL&…...

跟我学C++中级篇——虚函数的性能

一、虚函数性能 一般来说&#xff0c;面向对象的设计中&#xff0c;继承和多态是其中两个非常重要的特征。从使用的过程来看&#xff0c;一般应用到继承的&#xff0c;使用多态的可能性就非常大。而多态的实现有很多种&#xff0c; 但开发者通常认为的多态&#xff08;动多态&…...

trl - 微调、对齐大模型的全栈工具

文章目录 一、关于 TRL亮点 二、安装1、Python包2、从源码安装3、存储库 三、命令行界面&#xff08;CLI&#xff09;四、如何使用1、SFTTrainer2、RewardTrainer3、PPOTrainer4、DPOTrainer 五、其它开发 & 贡献参考文献最近策略优化 PPO直接偏好优化 DPO 一、关于 TRL T…...

GuLi商城-商品服务-API-品牌管理-品牌分类关联与级联更新

先配置mybatis分页&#xff1a; 品牌管理增加模糊查询&#xff1a; 品牌管理关联分类&#xff1a; 一个品牌可以有多个分类 一个分类也可以有多个品牌 多对多的关系&#xff0c;用中间表 涉及的类&#xff1a; 方法都比较简单&#xff0c;就不贴代码了...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...