Pandas 33个冷知识 0721
Pandas 33个冷知识
-
从Excel读取数据: 使用
pd.read_excel('file.xlsx')来读取Excel文件。 -
写入Excel: 使用
df.to_excel('file.xlsx', index=False)将DataFrame写入Excel文件。 -
创建日期索引: 使用
df.set_index(pd.to_datetime(df['date']))创建日期索引。 -
向后填充缺失值: 使用
df.fillna(method='bfill')向后填充缺失值。 -
按索引选取多行: 使用
df.loc[[1, 2, 5]]按索引选取多行。 -
按位置选取多行: 使用
df.iloc[[0, 2, 4]]按位置选取多行。 -
创建空Series: 使用
pd.Series(dtype='float64')创建一个空Series。 -
重置列顺序: 使用
df = df[['col2', 'col1']]重新排列DataFrame的列顺序。 -
按多列排序: 使用
df.sort_values(by=['col1', 'col2'], ascending=[True, False])按多列排序。 -
按列查找最大值的行: 使用
df.loc[df['col'].idxmax()]查找列中最大值所在的行。 -
按列查找最小值的行: 使用
df.loc[df['col'].idxmin()]查找列中最小值所在的行。 -
按条件删除行: 使用
df.drop(df[df['col'] < 10].index)按条件删除行。 -
按条件更新值: 使用
df.loc[df['col'] < 10, 'col'] = 10按条件更新值。 -
按列计算累计最大值: 使用
df['cummax'] = df['col'].cummax()计算列的累计最大值。 -
按列计算累计最小值: 使用
df['cummin'] = df['col'].cummin()计算列的累计最小值。 -
按列计算累计乘积: 使用
df['cumprod'] = df['col'].cumprod()计算列的累计乘积。 -
计算百分比变化: 使用
df['pct_change'] = df['col'].pct_change()计算列的百分比变化。 -
滚动窗口最大值: 使用
df['rolling_max'] = df['col'].rolling(window=3).max()计算滚动窗口最大值。 -
滚动窗口最小值: 使用
df['rolling_min'] = df['col'].rolling(window=3).min()计算滚动窗口最小值。 -
检测重复值: 使用
df.duplicated()检测重复值。 -
删除所有重复值: 使用
df.drop_duplicates()删除所有重复值。 -
替换值中的空字符串: 使用
df.replace('', np.nan, inplace=True)替换值中的空字符串。 -
数据透视表(多值): 使用
pd.pivot_table(df, values=['val1', 'val2'], index='col1', columns='col2')创建数据透视表。 -
分组并计算自定义函数: 使用
df.groupby('col').apply(lambda x: x.max() - x.min())进行分组并计算自定义函数。 -
扩展列表到多行: 使用
df.explode('col')将列表扩展到多行。 -
按列计算频率表: 使用
pd.crosstab(df['col1'], df['col2'])计算频率表。 -
将列名改为小写: 使用
df.columns = df.columns.str.lower()将所有列名改为小写。 -
将列名改为大写: 使用
df.columns = df.columns.str.upper()将所有列名改为大写。 -
按列值绘制直方图: 使用
df['col'].hist()绘制列值的直方图。 -
按列值绘制密度图: 使用
df['col'].plot(kind='kde')绘制列值的密度图。 -
按列值绘制箱线图: 使用
df.boxplot(column='col')绘制列值的箱线图。 -
按列值绘制散点图: 使用
df.plot.scatter(x='col1', y='col2')绘制列值的散点图。 -
数据框列值字符串替换: 使用
df['col'].str.replace('old', 'new')替换列中的字符串。
相关文章:
Pandas 33个冷知识 0721
Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...
C++ map和set的使用
目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...
yarn的安装和配置以及更新总结,npm的对照使用差异
1. Yarn简介 Yarn 是一个由 Facebook 开发的现代 JavaScript 包管理器,旨在提供更快、更安全、更可靠的包管理体验。 1.1 什么是Yarn Yarn 是一个快速、可靠和安全的 JavaScript 包管理器,它通过并行化操作和智能缓存机制,显著提升了依赖安…...
【Git命令】git rebase之合并提交记录
使用场景 在本地提交了两个commit,但是发现根本没有没必要分为两次,需要想办法把两次提交合并成一个提交;这个时候可以使用如下命令启动交互式变基会话: git rebase -i HEAD~N这里 N 是你想要重新调整的最近的提交数。 如下在本地…...
为什么品牌需要做 IP 形象?
品牌做IP形象的原因有多方面,这些原因共同构成了IP形象在品牌建设中的重要性和价值,主要原因有以下几个方面: 增强品牌识别度与记忆点: IP形象作为品牌的视觉符号,具有独特性和辨识性,能够在消费者心中留…...
Kubernetes 1.24 版弃用 Dockershim 后如何迁移到 containerd 和 CRI-O
在本系列的上一篇文章中,我们讨论了什么是 CRI 和 OCI,Docker、containerd、CRI-O 之间的区别以及它们的架构等。最近,我们得知 Docker 即将从 kubernetes 中弃用!(查看 kubernetes 官方的这篇文章)那么让我…...
70. 爬楼梯【 力扣(LeetCode) 】
一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 二、测试用例 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶…...
R语言优雅的把数据基线表(表一)导出到word
基线表(Baseline Table)是医学研究中常用的一种数据表格,用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...
XMl基本操作
引言 使⽤Mybatis的注解⽅式,主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能,建议使⽤XML来配置映射语句,也就是将SQL语句写在XML配置⽂件中. 之前,我们学习了,用注解的方式来实现MyBatis 接下来我们…...
Linux——Shell脚本和Nginx反向代理服务器
1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序,它是用户使用Linux的桥梁 Shell 既是一种命令语言,有是一种程序设计语言 Shell是指一种应用程序,这个应用程序提供了一个界面,用户通过这个界面访问…...
pyspark使用 graphframes创建和查询图的方法
1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入: spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...
【web】-flask-简单的计算题(不简单)
打开页面是这样的 初步思路,打开F12,查看头,都发现了这个表达式的base64加密字符串。编写脚本提交答案,发现不对; 无奈点开source发现源代码,是flask,初始化表达式,获取提交的表达式࿰…...
Apache Sqoop
Apache Sqoop是一个开源工具,用于在Apache Hadoop和关系型数据库(如MySQL、Oracle、PostgreSQL等)之间进行数据的批量传输。其主要功能包括: 1. 数据导入:从关系型数据库(如MySQL、Oracle等)中将…...
【Python】TensorFlow介绍与实战
TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中,深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持,成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍,包括其优势、应用场景以及在最新…...
第100+16步 ChatGPT学习:R实现Xgboost分类
基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。 答曰:可!用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了,就帮各位搬运一下吧。 二、R代码实现Xgboost分类 (…...
【操作系统】定时器(Timer)的实现
这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...
鸿蒙Navigation路由能力汇总
基本使用步骤: 1、新增配置文件router_map: 2、在moudle.json5中添加刚才新增的router_map配置: 3、使用方法: 属性汇总: https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...
1:1公有云能力整体输出,腾讯云“七剑”下云端
【全球云观察 | 科技热点关注】 曾几何时,云计算技术的兴起,为千行万业的数字化创新带来了诸多新机遇,同时也催生了新产业新业态新模式,激发出高质量发展的科技新动能。很显然,如今的云创新已成为高质量发…...
【iOS】APP仿写——网易云音乐
网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能,将图片放置在LaunchScreen中即可。这里也可以通过定时器控制,来实现启动的效果 效果图: 这里放一篇大…...
react 快速入门思维导图
在掌握了react中一下的几个步骤和语法,基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件,类组件有生命周期,而函数式组件没有。 2、jsx语法。react主要使用jsx语法,需要使用babel和webpa…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...
若依登录用户名和密码加密
/*** 获取公钥:前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
