当前位置: 首页 > news >正文

Pandas 33个冷知识 0721

Pandas 33个冷知识

  1. 从Excel读取数据: 使用 pd.read_excel('file.xlsx') 来读取Excel文件。

  2. 写入Excel: 使用 df.to_excel('file.xlsx', index=False) 将DataFrame写入Excel文件。

  3. 创建日期索引: 使用 df.set_index(pd.to_datetime(df['date'])) 创建日期索引。

  4. 向后填充缺失值: 使用 df.fillna(method='bfill') 向后填充缺失值。

  5. 按索引选取多行: 使用 df.loc[[1, 2, 5]] 按索引选取多行。

  6. 按位置选取多行: 使用 df.iloc[[0, 2, 4]] 按位置选取多行。

  7. 创建空Series: 使用 pd.Series(dtype='float64') 创建一个空Series。

  8. 重置列顺序: 使用 df = df[['col2', 'col1']] 重新排列DataFrame的列顺序。

  9. 按多列排序: 使用 df.sort_values(by=['col1', 'col2'], ascending=[True, False]) 按多列排序。

  10. 按列查找最大值的行: 使用 df.loc[df['col'].idxmax()] 查找列中最大值所在的行。

  11. 按列查找最小值的行: 使用 df.loc[df['col'].idxmin()] 查找列中最小值所在的行。

  12. 按条件删除行: 使用 df.drop(df[df['col'] < 10].index) 按条件删除行。

  13. 按条件更新值: 使用 df.loc[df['col'] < 10, 'col'] = 10 按条件更新值。

  14. 按列计算累计最大值: 使用 df['cummax'] = df['col'].cummax() 计算列的累计最大值。

  15. 按列计算累计最小值: 使用 df['cummin'] = df['col'].cummin() 计算列的累计最小值。

  16. 按列计算累计乘积: 使用 df['cumprod'] = df['col'].cumprod() 计算列的累计乘积。

  17. 计算百分比变化: 使用 df['pct_change'] = df['col'].pct_change() 计算列的百分比变化。

  18. 滚动窗口最大值: 使用 df['rolling_max'] = df['col'].rolling(window=3).max() 计算滚动窗口最大值。

  19. 滚动窗口最小值: 使用 df['rolling_min'] = df['col'].rolling(window=3).min() 计算滚动窗口最小值。

  20. 检测重复值: 使用 df.duplicated() 检测重复值。

  21. 删除所有重复值: 使用 df.drop_duplicates() 删除所有重复值。

  22. 替换值中的空字符串: 使用 df.replace('', np.nan, inplace=True) 替换值中的空字符串。

  23. 数据透视表(多值): 使用 pd.pivot_table(df, values=['val1', 'val2'], index='col1', columns='col2') 创建数据透视表。

  24. 分组并计算自定义函数: 使用 df.groupby('col').apply(lambda x: x.max() - x.min()) 进行分组并计算自定义函数。

  25. 扩展列表到多行: 使用 df.explode('col') 将列表扩展到多行。

  26. 按列计算频率表: 使用 pd.crosstab(df['col1'], df['col2']) 计算频率表。

  27. 将列名改为小写: 使用 df.columns = df.columns.str.lower() 将所有列名改为小写。

  28. 将列名改为大写: 使用 df.columns = df.columns.str.upper() 将所有列名改为大写。

  29. 按列值绘制直方图: 使用 df['col'].hist() 绘制列值的直方图。

  30. 按列值绘制密度图: 使用 df['col'].plot(kind='kde') 绘制列值的密度图。

  31. 按列值绘制箱线图: 使用 df.boxplot(column='col') 绘制列值的箱线图。

  32. 按列值绘制散点图: 使用 df.plot.scatter(x='col1', y='col2') 绘制列值的散点图。

  33. 数据框列值字符串替换: 使用 df['col'].str.replace('old', 'new') 替换列中的字符串。

相关文章:

Pandas 33个冷知识 0721

Pandas 33个冷知识 从Excel读取数据: 使用 pd.read_excel(file.xlsx) 来读取Excel文件。 写入Excel: 使用 df.to_excel(file.xlsx, indexFalse) 将DataFrame写入Excel文件。 创建日期索引: 使用 df.set_index(pd.to_datetime(df[date])) 创建日期索引。 向后填充缺失值: 使用…...

C++ map和set的使用

目录 0.前言 1.关联式容器 2.键值对 3.树形结构的关联式容器 3.1树形结构的特点 3.2树形结构在关联式容器中的应用 4.set 4.1概念与性质 4.2使用 5.multiset 5.1概念与性质 5.2使用 6.map 6.1概念与性质 6.2使用 7.multimap 7.1概念与性质 7.2使用 8.小结 &a…...

yarn的安装和配置以及更新总结,npm的对照使用差异

1. Yarn简介 Yarn 是一个由 Facebook 开发的现代 JavaScript 包管理器&#xff0c;旨在提供更快、更安全、更可靠的包管理体验。 1.1 什么是Yarn Yarn 是一个快速、可靠和安全的 JavaScript 包管理器&#xff0c;它通过并行化操作和智能缓存机制&#xff0c;显著提升了依赖安…...

【Git命令】git rebase之合并提交记录

使用场景 在本地提交了两个commit&#xff0c;但是发现根本没有没必要分为两次&#xff0c;需要想办法把两次提交合并成一个提交&#xff1b;这个时候可以使用如下命令启动交互式变基会话&#xff1a; git rebase -i HEAD~N这里 N 是你想要重新调整的最近的提交数。 如下在本地…...

为什么品牌需要做 IP 形象?

品牌做IP形象的原因有多方面&#xff0c;这些原因共同构成了IP形象在品牌建设中的重要性和价值&#xff0c;主要原因有以下几个方面&#xff1a; 增强品牌识别度与记忆点&#xff1a; IP形象作为品牌的视觉符号&#xff0c;具有独特性和辨识性&#xff0c;能够在消费者心中留…...

Kubernetes 1.24 版弃用 Dockershim 后如何迁移到 containerd 和 CRI-O

在本系列的上一篇文章中&#xff0c;我们讨论了什么是 CRI 和 OCI&#xff0c;Docker、containerd、CRI-O 之间的区别以及它们的架构等。最近&#xff0c;我们得知 Docker 即将从 kubernetes 中弃用&#xff01;&#xff08;查看 kubernetes 官方的这篇文章&#xff09;那么让我…...

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 二、测试用例 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1. 1 阶…...

R语言优雅的把数据基线表(表一)导出到word

基线表&#xff08;Baseline Table&#xff09;是医学研究中常用的一种数据表格&#xff0c;用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式&#xff0c;主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能&#xff0c;建议使⽤XML来配置映射语句&#xff0c;也就是将SQL语句写在XML配置⽂件中. 之前&#xff0c;我们学习了&#xff0c;用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序&#xff0c;它是用户使用Linux的桥梁 Shell 既是一种命令语言&#xff0c;有是一种程序设计语言 Shell是指一种应用程序&#xff0c;这个应用程序提供了一个界面&#xff0c;用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路&#xff0c;打开F12&#xff0c;查看头&#xff0c;都发现了这个表达式的base64加密字符串。编写脚本提交答案&#xff0c;发现不对&#xff1b; 无奈点开source发现源代码&#xff0c;是flask,初始化表达式&#xff0c;获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具&#xff0c;用于在Apache Hadoop和关系型数据库&#xff08;如MySQL、Oracle、PostgreSQL等&#xff09;之间进行数据的批量传输。其主要功能包括&#xff1a; 1. 数据导入&#xff1a;从关系型数据库&#xff08;如MySQL、Oracle等&#xff09;中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中&#xff0c;深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持&#xff0c;成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍&#xff0c;包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 &#xff5c; 科技热点关注】 曾几何时&#xff0c;云计算技术的兴起&#xff0c;为千行万业的数字化创新带来了诸多新机遇&#xff0c;同时也催生了新产业新业态新模式&#xff0c;激发出高质量发展的科技新动能。很显然&#xff0c;如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能&#xff0c;将图片放置在LaunchScreen中即可。这里也可以通过定时器控制&#xff0c;来实现启动的效果 效果图&#xff1a; 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法&#xff0c;基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件&#xff0c;类组件有生命周期&#xff0c;而函数式组件没有。 2、jsx语法。react主要使用jsx语法&#xff0c;需要使用babel和webpa…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...