当前位置: 首页 > news >正文

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

二、测试用例

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1+ 12. 2

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1+ 1+ 12. 1+ 23. 2+ 1

二、解题思路

  1. 基本思路:记爬 2 个台阶的个数为 k ,该题目可以转化为计算 k = 0,1,2,…,的方案数,例如:k = 0,表示每次只爬一个台阶,方案数为 C n − k k = C n 0 = 1 C_{n-k}^k=C_n^0=1 Cnkk=Cn0=1 ;k = 1 ,表示有一次是爬两个台阶,其他都是爬一个台阶,方案数就是 C n − k k = C n − 1 1 = n − 1 C_{n-k}^k=C_{n-1}^1=n-1 Cnkk=Cn11=n1 ,依次类推,总方案数就是 ∑ k = 0 n 2 C n − k k \sum_{k=0}^{\frac n2}C_{n-k}^k k=02nCnkk
  2. 具体思路:
    • 暴力解:写一个函数计算 C n k = n ( n − 1 ) ⋯ ( n − k + 1 ) k ! C_n^k=\frac{n(n-1)\cdots(n-k+1)}{k!} Cnk=k!n(n1)(nk+1)
    • 动态规划:计算 C n k C_n^k Cnk 表,其中 C n k = C n − 1 k − 1 + c n − 1 k C_n^k=C_{n-1}^{k-1}+c_{n-1}^k Cnk=Cn1k1+cn1k

三、参考代码

3.1 暴力解

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)

数据可能会溢出

// 计算cnk,k 表示爬 2 个楼梯的个数,n 表示楼梯总数 - k
int c(int k,int n){long long int a=1,b=1;for(int i=0;i<k;i++){a*=n-i;b*=k-i;}return a/b;
}int climbStairs(int n) {int sum=0;for(int i=0;2*i<=n;i++){sum+=c(i,n-i);}return sum;
}

3.2 动态规划

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

const static int max=45;
long c[max+1][max+1];
// dp方法,核心是 c[n][k]=c[n-1][k-1]+c[n-1][k]
void compute_c(){for(int i=0;i<=max;i++){  c[i][0]=c[i][i]=1;}for(int n=1;n<=max;n++){for(int k=1;k<n;k++){c[n][k]=c[n-1][k-1]+c[n-1][k];}}
}
int climbStairs(int n) {int sum=0;compute_c();for(int i=0;2*i<=n;i++){sum+=c[n-i][i];}return sum;
}

相关文章:

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 二、测试用例 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1. 1 阶…...

R语言优雅的把数据基线表(表一)导出到word

基线表&#xff08;Baseline Table&#xff09;是医学研究中常用的一种数据表格&#xff0c;用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式&#xff0c;主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能&#xff0c;建议使⽤XML来配置映射语句&#xff0c;也就是将SQL语句写在XML配置⽂件中. 之前&#xff0c;我们学习了&#xff0c;用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序&#xff0c;它是用户使用Linux的桥梁 Shell 既是一种命令语言&#xff0c;有是一种程序设计语言 Shell是指一种应用程序&#xff0c;这个应用程序提供了一个界面&#xff0c;用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路&#xff0c;打开F12&#xff0c;查看头&#xff0c;都发现了这个表达式的base64加密字符串。编写脚本提交答案&#xff0c;发现不对&#xff1b; 无奈点开source发现源代码&#xff0c;是flask,初始化表达式&#xff0c;获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具&#xff0c;用于在Apache Hadoop和关系型数据库&#xff08;如MySQL、Oracle、PostgreSQL等&#xff09;之间进行数据的批量传输。其主要功能包括&#xff1a; 1. 数据导入&#xff1a;从关系型数据库&#xff08;如MySQL、Oracle等&#xff09;中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中&#xff0c;深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持&#xff0c;成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍&#xff0c;包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 &#xff5c; 科技热点关注】 曾几何时&#xff0c;云计算技术的兴起&#xff0c;为千行万业的数字化创新带来了诸多新机遇&#xff0c;同时也催生了新产业新业态新模式&#xff0c;激发出高质量发展的科技新动能。很显然&#xff0c;如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能&#xff0c;将图片放置在LaunchScreen中即可。这里也可以通过定时器控制&#xff0c;来实现启动的效果 效果图&#xff1a; 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法&#xff0c;基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件&#xff0c;类组件有生命周期&#xff0c;而函数式组件没有。 2、jsx语法。react主要使用jsx语法&#xff0c;需要使用babel和webpa…...

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…...

[算法题]两个链表的第一个公共结点

题目链接: 两个链表的第一个公共结点 图示: 两个链表如果长度一致, 那么两人同时一人走一步, 如果存在公共结点, 迟早会相遇, 但是如果长度不一致单存在公共结点, 两人同时一人走一步不会相遇, 此时定义两个变量, node1 和 node2, 这两个变量分别从 x1 和 x2 开始走, 当其走完…...

MySQL事务管理(上)

目录 前言 CURD不加控制&#xff0c;会有什么问题&#xff1f; CURD满足什么属性&#xff0c;能解决上述问题&#xff1f; 事务 什么是事务&#xff1f; 为什么会出现事务 事务的版本支持 事务提交方式 查看事务提交方式 改变 MySQL 的自动提交模式: 事务常见操作方式 前…...

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…...

为 android编译 luajit库、 交叉编译

时间&#xff1a;20200719 本机环境&#xff1a;iMac2017 macOS11.4 参考: 官方的文档&#xff1a;Use the NDK with other build systems 写在前边&#xff1a;交叉编译跟普通编译类似&#xff0c;无非是利用特殊的编译器、链接器生成动态或静态库; make 本质上是按照 Make…...

【音视频】音频重采样

文章目录 前言音频重采样的基本概念音频重采样的原因1. 设备兼容性2. 文件大小和带宽3. 音质优化4. 标准化和规范5. 多媒体同步6. 降低处理负载重采样的注意事项 总结 前言 音频重采样是指将音频文件的采样率转换成另一种采样率的过程。这在音频处理和传输中是一个常见且重要的…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...