当前位置: 首页 > news >正文

PyQT6---环境搭建

1、虚拟环境搭建

创建虚拟环境

create -n pyqt6_39 python=3.9

242ca99e5b71f79edd7489a71ecbd261.jpeg

切换虚拟环境

conda activate pyqt6_39

e46d1b67da2e8fb0381dd2322724365a.jpeg

2、安装pyqt6

安装pyqt6和pyqt6-tools

pip install PyQt6 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyqt6-tools -i https://pypi.tuna.tsinghua.edu.cn/simple

3、配置QTDesigner是QT界面设计器

d0e6fab49aef23b1d79c545c7aedae1b.jpeg

Name写QTDesigner

Tool Settings -> Program: 写你Python3的安装目录下designer.exe路径

我这边本地是:

G:\asoftware\anaconda\dev\envs\pyqt6_39\Lib\sitepackages\qt6_applications\Qt\bin\designer.exe

4、配置外部工具PYUIC

ade5e967041924a028a836795ec00b4e.jpeg

PYUIC是用于将designer生成的ui文件转换成py文件

program填Python路径
arguments填:-m PyQt6.uic.pyuic $FileName$ -o $FileNameWithoutExtension$.py
working directory填:$FileDir$
conda创建的python目录:G:\asoftware\anaconda\dev\envs\pyqt6_39\python.exe


5、验证安装成功

3ec3f7ebec903dd5cedd95674878d162.jpeg

6、测试示例

Tools -> QTDesigner 打开设计器,拖拉一个按钮

852d4a64c5949543d09a7f10570a3fa2.jpeg

出现上述内容,说明QTdesigner安装没问题

cc3dd097a3207b40f46513ad2b4cbfe9.jpeg

看到生成ui文件对应的python文件,就说明PyUIC配置成功。

相关文章:

PyQT6---环境搭建

1、虚拟环境搭建 创建虚拟环境 create -n pyqt6_39 python3.9 切换虚拟环境 conda activate pyqt6_39 2、安装pyqt6 安装pyqt6和pyqt6-tools pip install PyQt6 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install pyqt6-tools -i https://pypi.tuna.tsinghua.edu.cn/…...

whisper-api语音识别语音翻译高性能兼容openai接口协议的开源项目

whisper-api 介绍 使用openai的开源项目winsper语音识别开源模型封装成openai chatgpt兼容接口 软件架构 使用uvicorn、fastapi、openai-whisper等开源库实现高性能接口 更多介绍 https://blog.csdn.net/weixin_40986713/article/details/138712293 使用说明 下载代码安装…...

面试题:Java中堆内存和栈内存的区别,缓存数据是把数据放到哪里

目录 堆内存(Heap)栈内存(Stack)String字符串的hashcode缓存 在Java中,堆内存(Heap)和栈内存(Stack)是两种不同类型的内存区域。它们各自扮演着不同的角色,并…...

【开源库学习】libodb库学习(一)

Hello World Example 在本章中,我们将使用传统的“Hello World”示例展示如何创建一个依赖于ODB进行对象持久化的简单C应用程序。特别是,我们将讨论如何声明持久类、生成数据库支持代码以及编译和运行我们的应用程序。我们还将学习如何使对象持久化&…...

Java中SPI机制原理解析

使用SPI机制前后的代码变化 加载MySQL对JDBC的Driver接口实现 在未使用SPI机制之前,使用JDBC操作数据库的时候,一般会写如下的代码:// 通过这行代码手动加载MySql对Driver接口的实现类 Class.forName("com.mysql.jdbc.Driver") Dr…...

数学建模~~~SPSS相关和回归分析

目录 1.双变量相关分析 1.1理论基础 1.2简单散点图的绘制介绍 1.3相关性分析 1.4分析相关性结果 2.简单线性回归分析 2.1简单概括 2.2分析过程 2.3结果分析 3.曲线回归分析 3.1问题介绍 3.2分析过程 3.3结果分析 1.双变量相关分析 1.1理论基础 双变量相关分析并不…...

【Android】常用基础布局

布局是一种可用于放置很多控件的容器,它可以按照一定的规律调整内部控件的位置,从而编写出精美的界面,布局内不单单可以放控件,也可以嵌套布局,这样可以完成一些复杂的界面,下面就来认识一些常用的布局吧。…...

服务攻防-中间件安全(漏洞复现)

一.中间件-IIS-短文件&解析&蓝屏 IIS现在用的也少了,漏洞也基本没啥用 1、短文件:信息收集 2、文件解析:还有点用 3、HTTP.SYS:蓝屏崩溃 没有和权限挂钩 4、CVE-2017-7269 条件过老 windows 2003上面的漏洞 二.中…...

【SD】深入理解Stable Diffusion与ComfyUI的使用

【SD】深入理解Stable Diffusion与ComfyUI的使用 1. Stable Diffusion(SD)原理概述2. 各部件详解3. SD的工作流程4. ComfyUI与SD的结合5. 总结 1. Stable Diffusion(SD)原理概述 整体结构:SD不是单一模型,…...

Linux 12:多线程2

1. 生产者消费者模型 生产者消费者模型有三种关系,两个角色,一个交易场所。 三种关系: 生产者之间是什么关系?竞争 - 互斥 消费者和消费者之间?竞争 - 互斥 消费者和消费者之间?互斥和同步 两个角色: 生产者和消费者 一个交…...

Android RSA 加解密

文章目录 一、RSA简介二、RSA 原理介绍三、RSA 秘钥对生成1. 密钥对生成2. 获取公钥3. 获取私钥 四、PublicKey 和PrivateKey 的保存1. 获取公钥十六进制字符串1. 获取私钥十六进制字符串 五、PublicKey 和 PrivateKey 加载1. 加载公钥2. 加载私钥 六、 RSA加解密1. RSA 支持三…...

类与对象-多态-案例3-电脑组装具体实现

#include<iostream> #include<string> using namespace std; //CPU class CPU { public:virtual void calculate() 0; }; //显卡 class GraCard { public:virtual void graphics() 0; }; //存储 class Memory { public:virtual void memory() 0; }; class Compu…...

try-with-resources 语句的用途和优点有哪些,它如何自动管理资源?

在Java编程中&#xff0c;资源管理是一个重要的议题&#xff0c;尤其是当你在代码中使用那些需要显式关闭的资源&#xff0c;比如文件流、数据库连接或者网络套接字等。 如果资源使用完毕后忘记关闭&#xff0c;不仅会导致资源泄露&#xff0c;还可能引起程序性能问题甚至系统…...

GraphRAG参数与使用步骤 | 基于GPT-4o-mini实现更便宜的知识图谱RAG

首先给兄弟朋友们展示一下结论&#xff0c;一个文本18万多字&#xff0c;txt文本大小185K&#xff0c;采用GraphRAG,GPT-4o-mini模型&#xff0c;索引耗时差不多5分钟&#xff0c;消耗API价格0.15美元 GraphRAG介绍 GraphRAG是微软最近开源的一款基于知识图谱技术的框架&#…...

/秋招突击——7/21——复习{堆——数组中的第K大元素}——新作{回溯——全排列、子集、电话号码的字母组合、组合总和、括号生成}

文章目录 引言复习数组中的第K大的最大元素复习实现参考实现 新作回溯模板46 全排列个人实现参考实现 子集个人实现参考实现 电话号码的字母组合复习实现 组合总和个人实现参考实现 括号生成复习实现 总结 引言 昨天的科大讯飞笔试做的稀烂&#xff0c;今天回来好好练习一下&a…...

matlab 异常值检测与处理——Robust Z-score法

目录 一、算法原理1、概述2、主要函数3、参考文献二、代码实现三、结果展示四、相关链接本文由CSDN点云侠翻译,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 1、概述 Robust Z-score法也被称为中位数绝对偏差法。它类似于Z-sc…...

Ubuntu 20安装JDK17和MySQL8.0

一.jdk 安装JDK 第一步&#xff1a;更新软件包&#xff1a;sudo apt update 第二步&#xff1a;安装JDK&#xff1a;sudo apt install openjdk-17-jdk 第三步&#xff1a;检测JDK: java -version 卸载JDK&#xff1a; 第一步&#xff1a;移除JDK包&#xff1a;apt-get purg…...

DC-1靶场打靶第一次!!!!冲冲冲!

今天打了一下DC-1这个靶场&#xff0c;感觉收获比大&#xff0c;我就来记录一下。 我的思路是下面的这个 我们先把靶机导入&#xff0c;然后与我们的liunx(攻击机)在同一个网段中&#xff0c;这也大大的减低难度。 然后我们先对自己这个网段内存活的主机进行操作&#xff0c;我…...

【LeetCode】填充每个节点的下一个右侧节点指针 II

目录 一、题目二、解法完整代码 一、题目 给定一个二叉树&#xff1a; struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将 next 指针设置为 NUL…...

mac无法清空废纸篓怎么办 mac废纸篓清空了如何找回 cleanmymac误删文件怎么恢复

废纸篓相当于“一颗后悔药”&#xff0c;用于临时存储用户删除的文件。我们从从Mac上删除的文件&#xff0c;一般会进入废纸篓中。如果我们后悔了&#xff0c;可以从废纸篓中找回来。然而&#xff0c;有时我们会发现mac无法清空废纸篓&#xff0c;这是怎么回事?本文将探讨一些…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...