基于YOLO模型的鸟类识别系统
鸟类识别在生物研究和保护中具有重要意义。本文将详细介绍如何使用YOLO(You Only Look Once)模型构建一个鸟类识别系统,包括UI界面、YOLOv8/v7/v6/v5代码以及训练数据集。
目录
2. 环境配置
2.1 安装Python和相关库
2.2 安装YOLO模型库
3. 数据集准备
3.1 数据收集
3.2 数据标注
3.3 数据集划分
4. 模型训练
4.1 配置文件修改
4.2 训练模型
5. 模型部署
5.1 使用Flask搭建Web服务
5.2 创建UI界面
6. 项目声明
鸟类识别系统基于YOLO模型,通过训练后的模型对图像中的鸟类进行检测和识别。系统包括以下主要功能:
- 图像上传与展示
- 鸟类识别与标注
- 识别结果展示
2. 环境配置
2.1 安装Python和相关库
首先,确保安装了Python 3.7及以上版本,并安装以下必要的库:
pip install numpy pandas opencv-python pillow
pip install torch torchvision
pip install flask
2.2 安装YOLO模型库
下载并安装YOLO模型库,我们以YOLOv5为例:
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
3. 数据集准备
3.1 数据收集
收集包含各种鸟类的图像数据,可以使用公开数据集,如Kaggle上的鸟类数据集。
3.2 数据标注
使用LabelImg等工具对鸟类图像进行标注,生成YOLO格式的标签文件。
3.3 数据集划分
将数据集划分为训练集、验证集和测试集,确保每个类别的数据分布均匀。
4. 模型训练
4.1 配置文件修改
在yolov5
目录下创建一个新的配置文件birds.yaml
,内容如下:
train: /path/to/train/images
val: /path/to/val/imagesnc: 10 # 鸟类类别数
names: ['sparrow', 'eagle', 'parrot', 'pigeon', 'owl', 'crow', 'peacock', 'woodpecker', 'flamingo', 'penguin']
4.2 训练模型
运行以下命令开始训练模型:
python train.py --img 640 --batch 16 --epochs 50 --data birds.yaml --weights yolov5s.pt
训练完成后,模型会保存为best.pt
文件。
5. 模型部署
5.1 使用Flask搭建Web服务
在项目根目录下创建一个新的文件夹webapp
,并在其中创建app.py
:
from flask import Flask, request, render_template
import torch
from PIL import Imageapp = Flask(__name__)
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')@app.route('/')
def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
def predict():img = Image.open(request.files['file'].stream)results = model(img)return results.pandas().xyxy[0].to_json(orient="records")if __name__ == '__main__':app.run()
5.2 创建UI界面
在webapp
文件夹中创建templates
文件夹,并在其中创建index.html
:
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>鸟类识别系统</title>
</head>
<body><h1>鸟类识别系统</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file"><button type="submit">上传并识别</button></form><div id="result"></div><script>const form = document.querySelector('form');form.addEventListener('submit', async (e) => {e.preventDefault();const formData = new FormData(form);const response = await fetch('/predict', {method: 'POST',body: formData});const result = await response.json();document.getElementById('result').innerText = JSON.stringify(result, null, 2);});</script>
</body>
</html>
6. 项目声明
声明:本次博客是简单的项目思路,如果有想要UI界面+YOLOv8/v7/v6/v5代码+训练数据集)可以联系作者
相关文章:
基于YOLO模型的鸟类识别系统
鸟类识别在生物研究和保护中具有重要意义。本文将详细介绍如何使用YOLO(You Only Look Once)模型构建一个鸟类识别系统,包括UI界面、YOLOv8/v7/v6/v5代码以及训练数据集。 目录 2. 环境配置 2.1 安装Python和相关库 2.2 安装YOLO模型库 …...

WebRTC通话原理(SDP、STUN、 TURN、 信令服务器)
文章目录 1.媒体协商SDP简介 2.网络协商STUN的工作原理TURN工作原理 3.信令服务器信令服务器的主要功能信令服务器的实现方式 1.媒体协商 比如下面这个例子 A端与B端要想通信 A端视频采用VP8做解码,然后发送给B端,B端怎么解码? B端视频采用…...

面试场景题系列--(1)如果系统的 QPS 突然提升 10 倍该怎么设计?--xunznux
1. 如果系统的 QPS 突然提升 10 倍该怎么设计? 1.1 硬件的扩展微服务的拆分 如果所有的业务包括交易系统、会员信息、库存、商品等等都夹杂在一起,当流量一旦起来之后,单体架构的问题就暴露出来了,机器挂了所有的业务就全部无法…...

【数学建模】——前沿图与网络模型:新时代算法解析与应用
目录 1.图与网络的基本概念 1. 无向图和有向图 2. 简单图、完全图、赋权图 3. 顶点的度 4. 子图与图的连通性 2.图的矩阵表示 1. 关联矩阵 2. 邻接矩阵 3.最短路问题 1.Dijkstra 算法 2.Floyd 算法 4.最小生成树问题 1.Kruskal 算法 2.Prim 算法 5.着色问题 6.…...

视频分帧【截取图片】(YOLO目标检测【生成数据集】)
高效率制作数据集【按这个流程走,速度很顶】 本次制作,1059张图片【马路上流动车辆】 几乎就是全自动了,只要视频拍得好,YOLO辅助制作数据集就效率极高 视频中的图片抽取: 【由于视频内存过大,遇到报错执行…...

Redis7(二)Redis持久化双雄
持久化之RDB RDB的持久化方式是在指定时间间隔,执行数据集的时间点快照。也就是在指定的时间间隔将内存中的数据集快照写入磁盘,也就是Snapshot内存快照,它恢复时再将硬盘快照文件直接读回到内存里面。 RDB保存的是dump.rdb文件。 自动触发…...
发布支持TS的npm包
你现在有这么一个包,已经将他发布在npm上了,周下载量也还比较可观。美中不足的就是,这个包之前使用js写的,现在你想增加TS类型,提升用户使用体验,那么你现在可以做以下几个步骤 1.在你的包的根目录下创建一…...
计算机视觉9 全卷积网络
全卷积网络(Fully Convolutional Network,简称 FCN)在计算机视觉领域具有重要地位。 传统的卷积神经网络(CNN)在最后的输出层通常使用全连接层来进行分类任务。然而,全连接层会丢失空间信息,使得…...

02.C++入门基础(下)
1.函数重载 C支持在同一作用域中出现同名函数,但是要求这些同名函数的形参不同,可以是参数个数不同或者类型不同。这样C函数调用就表现出了多态行为,使用更灵活。C语言是不支持同一作用域中出现同名函数的。 1、参数类型不同 2、参数个数不同…...

【数据结构】探索排序的奥秘
若有不懂地方,可查阅我之前文章哦! 个人主页:小八哥向前冲~_csdn博客 所属专栏:数据结构_专栏 目录 排序的概念 几种排序方法介绍 冒泡排序 选择排序 插入排序 堆排序 向上调整建堆排序 向下调整建堆排序 希尔排序 快速…...
数据结构面试知识点总结3
#来自ウルトラマンティガ(迪迦) 1 线性表 最基本、最简单、最常用的一种数据结构。一个线性表是 n 个具有相同特性的数据元素的有限序列。 特征:数据元素之间是一对一的逻辑关系。 第一个数据元素没有前驱,称为头结点࿱…...

python-爬虫实例(5):将进酒,杯莫停!
目录 前言 将进酒,杯莫停! 一、浇给 二、前摇 1.导入selenium库 2.下载浏览器驱动 三、爬虫四步走 1.UA伪装 2.获取url 3.发送请求 4.获取响应数据进行解析并保存 总结 前言 博主身为一个农批,当然要尝试爬取王者荣耀的东西啦。 将进…...

AGI 之 【Hugging Face】 的【从零训练Transformer模型】之二 [ 从零训练一个模型 ] 的简单整理
AGI 之 【Hugging Face】 的【从零训练Transformer模型】之二 [ 从零训练一个模型 ] 的简单整理 目录 AGI 之 【Hugging Face】 的【从零训练Transformer模型】之二 [ 从零训练一个模型 ] 的简单整理 一、简单介绍 二、Transformer 1、模型架构 2、应用场景 3、Hugging …...
十大排序的稳定性和时间复杂度
十大排序算法的稳定性和时间复杂度是数据结构和算法中的重要内容。 以下是对这些算法的稳定性和时间复杂度的详细分析: 稳定性 稳定性指的是排序算法在排序过程中是否能够保持相等元素的原始相对顺序。根据这个定义,我们可以将排序算法分为稳定排序和…...

【系列教程之】1、点亮一个LED灯
1、点亮一个LED灯 作者将狼才鲸创建日期2024-07-23 CSDN教程目录地址:【目录】8051汇编与C语言系列教程本Gitee仓库原始地址:才鲸嵌入式/8051_c51_单片机从汇编到C_从Boot到应用实践教程 本源码包含C语言和汇编工程,能直接在电脑中通过Keil…...
搜维尔科技:Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作
Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作 搜维尔科技:Manus Metagloves使用精确的量子跟踪技术捕捉手部每一个细节动作...

机器学习 | 阿里云安全恶意程序检测
目录 一、数据探索1.1 数据说明1.2 训练集数据探索1.2.1 数据特征类型1.2.2 数据分布1.2.3 缺失值1.2.4 异常值1.2.5 标签分布探索 1.3 测试集探索1.3.1 数据信息1.3.2 缺失值1.3.3 数据分布1.3.4 异常值 1.4 数据集联合分析1.4.1 file_id 分析1.4.2 API 分析 二、特征工程与基…...

python打包exe文件-实现记录
1、使用pyinstaller库 安装库: pip install pyinstaller打包命令标注主入库程序: pyinstaller -F.\程序入口文件.py 出现了一个问题就是我在打包运行之后会出现有一些插件没有被打包。 解决问题: 通过添加--hidden-importcomtypes.strea…...
基本的DQL语句-单表查询
一、DQL语言 DQL(Data Query Language 数据查询语言)。用途是查询数据库数据,如SELECT语句。是SQL语句 中最核心、最重要的语句,也是使用频率最高的语句。其中,可以根据表的结构和关系分为单表查询和多 表联查。 注意:所有的查询…...

Vue3 对比 Vue2
相关信息简介2020年9月18日,Vue.js发布3.0版本,代号:One Piece(海贼王) 2 年多开发, 100位贡献者, 2600次提交, 600次 PR、30个RFC Vue3 支持 vue2 的大多数特性 可以更好的支持 Typescript,提供了完整的…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...

Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...