当前位置: 首页 > news >正文

*算法训练(leetcode)第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

刷题记录

  • *1049. 最后一块石头的重量 II
  • *494. 目标和
  • 474. 一和零

*1049. 最后一块石头的重量 II

leetcode题目地址

本题与分割等和子集类似,要达到碰撞最后的石头重量最小,则尽可能把石头等分为两堆。

时间复杂度: O ( m ∗ n ) O(m * n) O(mn)
空间复杂度: O ( n ) O(n) O(n)

// c++
class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int sum = 0;for(int i=0; i<stones.size(); i++){sum += stones[i];}int target = sum/2;vector dp(target+1, 0);for(int i=0; i<stones.size(); i++){for(int j=target; j>=stones[i]; j--){dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]);}}return sum - dp[target] - dp[target];}
};

*494. 目标和

leetcode题目地址

nums中元素初始均为正,先求其和sum。若|target|>sum,则无解。

需要推导出递推公式:设“+”数之和为X,则“-”数之和就是sum-X,其中,sum和target为已知。
可得递推公式: X − ( s u m − X ) = t a r g e t X-(sum-X) = target X(sumX)=target
解得: X = ( t a r g e t + s u m ) / 2 X = (target + sum) / 2 X=(target+sum)/2

因此, (target + sum) % 2 != 0时 无解。

一维dp数组记录背包容量为j时可以组成target的方案数量。

例如:target = 5

  • 当前已有1,则有dp[4]种方案
  • 当前已有2,则有dp[3]种方案
  • 当前已有k,则有dp[target-k]种方案

时间复杂度: O ( n ∗ m ) O(n*m) O(nm)
空间复杂度: O ( n ) O(n) O(n)

// c++
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0;for(int i=0; i<nums.size(); i++){sum += nums[i];}if(fabs(target)>sum) return 0;if((sum+target)%2!=0) return 0;vector<int> dp((target+sum)/2+1, 0);dp[0] = 1;for(int i=0; i<nums.size(); i++){for(int j=(target+sum)/2; j>=nums[i]; j--){dp[j] += dp[j-nums[i]]; }}return dp[(target+sum)/2];}
};

474. 一和零

leetcode题目地址

使用二维dp数组,横纵坐标分别代表0和1的背包容量,即dp[i][j]代表至多包含i个0和j个1的最多子串个数。

状态转移方程: d p [ i ] [ j ] = m a x ( d p [ i ] [ j ] , d p [ i − z e r o N u m ] [ j − o n e N u m ] + 1 ) dp[i][j] = max( dp[i][j], dp[i-zeroNum][j-oneNum]+1 ) dp[i][j]=max(dp[i][j],dp[izeroNum][joneNum]+1)

时间复杂度: O ( m ∗ n ∗ k ) O(m*n*k) O(mnk)
空间复杂度: O ( n ∗ m ) O(n*m) O(nm)

// c++
class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<int> zeros(strs.size(), 0);vector<int> ones(strs.size(), 0);for(int i=0; i<strs.size(); i++){for(int j=0; j<strs[i].size(); j++){if(strs[i][j] == '0') zeros[i]++;else ones[i]++;}}vector<vector<int>> dp(m+1, vector<int>(n+1, 0));for(int k=0; k<strs.size(); k++){for(int i=m; i>=zeros[k]; i--){for(int j=n; j>=ones[k]; j--){dp[i][j] = max(dp[i][j], dp[i-zeros[k]][j-ones[k]]+1);}}}return dp[m][n];}
};

相关文章:

*算法训练(leetcode)第三十一天 | 1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

刷题记录 *1049. 最后一块石头的重量 II*494. 目标和474. 一和零 *1049. 最后一块石头的重量 II leetcode题目地址 本题与分割等和子集类似&#xff0c;要达到碰撞最后的石头重量最小&#xff0c;则尽可能把石头等分为两堆。 时间复杂度&#xff1a; O ( m ∗ n ) O(m * n)…...

mac中如何使用obs推流以及使用vlc播放

使用obs推流 1.打开obs&#xff0c;在“来源”框中->点加号->选择媒体源->选择本地ts文件 2.obs中->点击右下角设置->点直播->服务选自定义->服务器填写你的srt服务url&#xff0c;比如&#xff1a;srt://192.168.13.211:14000?modecaller 注意&#xff…...

shopee虾皮 java后端 一面面经 整体感觉不难

面试总结&#xff1a;总体不难&#xff0c;算法题脑抽了只过了一半&#xff0c;面试官点出了问题说时间到了&#xff0c;反问一点点&#xff0c;感觉五五开&#xff0c;许愿一个二面 1.Java中的锁机制&#xff0c;什么是可重入锁 Java中的机制主要包括 synchronized关键字 Loc…...

HydraRPC: RPC in the CXL Era——论文阅读

ATC 2024 Paper CXL论文阅读笔记整理 问题 远程过程调用&#xff08;RPC&#xff09;是分布式系统中的一项基本技术&#xff0c;它允许函数在远程服务器上通过本地调用执行来促进网络通信&#xff0c;隐藏底层通信过程的复杂性简化了客户端/服务器交互[15]。RPC已成为数据中心…...

pve笔记

配置显卡直通参考 https://blog.csdn.net/m0_59148723/article/details/130923893 https://foxi.buduanwang.vip/virtualization/pve/561.html/ https://www.cnblogs.com/MAENESA/p/18005241 https://www.wangsansan.com/archives/181/ pve配置显卡直通到虚拟机后&#xff0c;…...

typecho仿某度响应式主题Xaink

新闻类型博客主题&#xff0c;简洁好看&#xff0c;适合资讯类、快讯类、新闻类博客建站&#xff0c;响应式设计&#xff0c;支持明亮和黑暗模式 直接下载 zip 源码->解压后移动到 Typecho 主题目录->改名为xaink->启用。 演示图&#xff1a; 下载链接&#xff1a; t…...

springcloud RocketMQ 客户端是怎么走到消费业务逻辑的 - debug step by step

springcloud RocketMQ &#xff0c;一个mq消息发送后&#xff0c;客户端是怎么一步步拿到消息去消费的&#xff1f;我们要从代码层面探究这个问题。 找的流程图&#xff0c;有待考究。 以下我们开始debug&#xff1a; 拉取数据的线程&#xff1a; PullMessageService.java 本…...

GPT-4o mini小型模型具备卓越的文本智能和多模态推理能力

GPT-4o mini 是首个应用OpenAI 指令层次结构方法的模型&#xff0c;这有助于增强模型抵抗越狱、提示注入和系统提示提取的能力。这使得模型的响应更加可靠&#xff0c;并有助于在大规模应用中更安全地使用。 GPT-4o mini 在学术基准测试中&#xff0c;无论是在文本智能还是多模…...

Milvus 向量数据库进阶系列丨部署形态选型

本系列文章介绍 在和社区小伙伴们交流的过程中&#xff0c;我们发现大家最关心的问题从来不是某个具体的功能如何使用&#xff0c;而是面对一个具体的实战场景时&#xff0c;如何选择合适的向量数据库解决方案或最优的功能组合。在 “Milvus 向量数据库进阶” 这个系列文章中&…...

【React】详解受控表单绑定

文章目录 一、受控组件的基本概念1. 什么是受控组件&#xff1f;2. 受控组件的优势3. 基本示例导入和初始化定义函数组件处理输入变化处理表单提交渲染表单导出组件 二、受控组件的进阶用法1. 多个输入框的处理使用多个状态变量使用一个对象管理状态 2. 处理选择框&#xff08;…...

使用puma部署ruby on rails的记录

之前写过一篇《记录一下我的Ruby On Rails的systemd服务脚本》的记录&#xff0c;现在补上一个比较政治正确的Ruby On Rails的生产环境部署记录。使用Puma部署项目。 创建文件 /usr/lib/systemd/system/puma.service [Unit] DescriptionPuma HTTP Server DocumentationRuby O…...

如何在Linux上使用Ansible自动化部署

Ansible是一个开源的自动化工具&#xff0c;可以帮助开发人员和系统管理员对大规模的服务器进行自动化部署和管理。它使用SSH协议来在远程服务器上执行任务&#xff0c;并通过模块化的方式提供了丰富的功能&#xff0c;可以轻松地管理服务器配置、软件部署和应用程序运行。 在…...

scrapy爬取城市天气数据

scrapy爬取城市天气数据 一、创建scrapy项目二、修改settings,设置UA,开启管道三、编写爬虫文件四、编写items.py五、在weather.py中导入WeatherSpiderItem类六、管道中存入数据,保存至csv文件七、完整代码一、创建scrapy项目 先来看一下爬取的字段情况: 本次爬取城市天…...

一天搞定React(5)——ReactRouter(下)【已完结】

Hello&#xff01;大家好&#xff0c;今天带来的是React前端JS库的学习&#xff0c;课程来自黑马的往期课程&#xff0c;具体连接地址我也没有找到&#xff0c;大家可以广搜巡查一下&#xff0c;但是总体来说&#xff0c;这套课程教学质量非常高&#xff0c;每个知识点都有一个…...

微信小程序之计算器

在日常生活中&#xff0c;计算器是人们广泛使用的工具&#xff0c;可以帮助我们快速且方便地计算金额、成本、利润等。下面将会讲解如何开发一个“计算器”微信小程序。 一、开发思路 1、界面和功能 “计算器”微信小程序的页面效果如图所示 在计算器中可以进行整数和小数的…...

【logstash】logstash使用多个子配置文件

这里有个误区在pipelines.yml中写conf.d/*&#xff0c;实测会有问题&#xff0c;不同的filter处理逻辑会复用。 现在有两个从kafka采集日志的配置文件&#xff1a;from_kafka1.conf&#xff0c;from_kafka2.conf 修改pipelines.yml配置文件 config/pipelines.yml- pipeline.i…...

暴风骑士S9电摩上市,定义青少年骑行安全新标准

暴风骑士&#xff0c;作为全球高端儿童电动车的开创品牌&#xff0c;以其卓越的技术实力和创新精神&#xff0c;不断推动行业发展。如今&#xff0c;暴风骑士再次突破自我&#xff0c;推出了全新力作——S9青少年电摩。这款全新上市的青少年专属电摩&#xff0c;以其领先的安全…...

spring security如何适配盐存在数据库中的密码

19.token认证过滤器代码实现_哔哩哔哩_bilibili19.token认证过滤器代码实现是SpringSecurity框架教程-Spring SecurityJWT实现项目级前端分离认证授权-挑战黑马&尚硅谷的第20集视频&#xff0c;该合集共计41集&#xff0c;视频收藏或关注UP主&#xff0c;及时了解更多相关视…...

Go语言编程 学习笔记整理 第2章 顺序编程 后半部分

1.流程控制 1.1 条件语句 if a < 5 { return 0 } else { return 1 } 注意&#xff1a;在有返回值的函数中&#xff0c;不允许将“最终的”return语句包含在if...else...结构中&#xff0c; 否则会编译失败&#xff01;&#xff01;&#xff01; func example(x int) i…...

美团后端二面

美团后端二面 ……………………………… 两道场景 一道 数字转中文读法&#xff08;1000-》一千&#xff09; 0八股0自我介绍 反问 “您觉得我能过吗&#xff1f;” “这个需要横行对比之后才能有结果” ……………………………… 什么时候到岗 场景题 1 假设我有一个…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

掌握 HTTP 请求:理解 cURL GET 语法

cURL 是一个强大的命令行工具&#xff0c;用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中&#xff0c;cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

相关类相关的可视化图像总结

目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系&#xff0c;可直观判断线性相关、非线性相关或无相关关系&#xff0c;点的分布密…...

day51 python CBAM注意力

目录 一、CBAM 模块简介 二、CBAM 模块的实现 &#xff08;一&#xff09;通道注意力模块 &#xff08;二&#xff09;空间注意力模块 &#xff08;三&#xff09;CBAM 模块的组合 三、CBAM 模块的特性 四、CBAM 模块在 CNN 中的应用 一、CBAM 模块简介 在之前的探索中…...

旋量理论:刚体运动的几何描述与机器人应用

旋量理论为描述刚体在三维空间中的运动提供了强大而优雅的数学框架。与传统的欧拉角或方向余弦矩阵相比&#xff0c;旋量理论通过螺旋运动的概念统一了旋转和平移&#xff0c;在机器人学、计算机图形学和多体动力学领域具有显著优势。这种描述不仅几何直观&#xff0c;而且计算…...

[学习笔记]使用git rebase做分支差异化同步

在一个.NET 项目中&#xff0c;使用了Volo.Abp库&#xff0c;但出于某种原因&#xff0c;需要源码调试&#xff0c;因此&#xff0c;使用源码方式集成的项目做了一个分支archive-abp-source 其中引用方式变更操作的提交为&#xff1a;7de53907 后续&#xff0c;在master分支中…...