当前位置: 首页 > news >正文

对递归的一些理解。力扣206题:翻转链表

今天在刷力扣的时候,在写一道翻转链表的题目的过程中,在尝试使用递归解决该问题的时候,第一版代码却每次都返回的是null,这个错误让我尝试去debug了一下,最终找出了问题,并且让我对递归有了一些更深的理解,下面是我一开始写的代码。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {  public ListNode reverseList(ListNode head) {  ListNode pre = null;  ListNode cur = head;  reverse(pre, cur);  return pre;  }  public void reverse(ListNode pre, ListNode cur) {  if (cur == null) {  // 递归基,当cur为空时,表示已到达链表末尾,直接返回  return;  }  ListNode next = cur.next; // 保存当前节点的下一个节点  cur.next = pre; // 反转当前节点的指向  reverse(cur, next); // 递归地处理下一个节点  }  
}

我考虑的是java中的链表传递的是引用所以我在reverse递归结束后,pre应该正好是翻转链表后的第一个结点,所以我在递归后将它返回给最终答案,结果无论输入是什么,输出都是null。

在debug后,我发现,

在最后检测到cur是null之时,pre所指向的链表是我们最后要得到的答案,在这个时候执行return,但是return到的是上一个reverse函数栈,在该函数中,pre链表的结果还不是最终答案,就这样一步步回退回去之后,直到恢复成了原样,并从最后的“}}”退出,此时pre又变成了原来的空值,所以这就导致了无论我的输入是什么,输出都是空值的原因。 

将代码修改如下,在最后找到目标答案值得时候,一层层返回这个答案值,而不是返回空值得回退,这样可以将最后得答案值返回给进入循环时的pre,修改后的代码如下所示。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {  public ListNode reverseList(ListNode head) {  ListNode pre = null;  ListNode cur = head;  return reverse(pre, cur); }  public ListNode reverse(ListNode pre, ListNode cur) {  if (cur == null) {  // 递归基,当cur为空时,表示已到达链表末尾,直接返回  return pre;  }  ListNode next = cur.next; // 保存当前节点的下一个节点  cur.next = pre; // 反转当前节点的指向  return reverse(cur, next); // 递归地处理下一个节点  }  
}

相关文章:

对递归的一些理解。力扣206题:翻转链表

今天在刷力扣的时候,在写一道翻转链表的题目的过程中,在尝试使用递归解决该问题的时候,第一版代码却每次都返回的是null,这个错误让我尝试去debug了一下,最终找出了问题,并且让我对递归有了一些更深的理解&…...

Kafka面试三道题

针对Kafka的面试题,从简单到困难,我可以给出以下三道题目: 1. Kafka的基本概念与优势 问题:请简要介绍Kafka是什么,并说明它相比传统消息队列的优势有哪些? 答案: Kafka定义:Apa…...

C/C++编程-算法学习-数字滤波器

数字滤波器 一阶低通滤波器结论推导11. 基本公式推导2. 截止频率 和 采样频率 推导 实现 二阶低通滤波器实现1实现2 一阶低通滤波器 结论 其基本原理基于以下公式: o u t p u t [ n ] α ∗ i n p u t [ n ] ( 1 − α ) ∗ o u t p u t [ n − 1 ] output[n] …...

maven介绍 搭建Nexus3(maven私服搭建)

Maven是一个强大的项目管理工具,它基于项目对象模型(POM:Project Object Model)的概念,通过XML格式的配置文件(pom.xml)来管理项目的构建 Maven确实可以被视为一种工程管理工具或项目自动化构…...

电商项目之如何判断线程池是否执行完所有任务

文章目录 1 问题背景2 前言3 4种常用的方法4 代码4.1 isTerminated()4.2 线程池的任务总数是否等于已执行的任务数4.3 CountDownLatch计数器4.4 CyclicBarrier计数器 1 问题背景 真实生产环境的电商项目,常使用线程池应用于执行大批量操作达到高性能的效果。应用场景…...

【前端 15】Vue生命周期

Vue生命周期 在Vue.js中,了解组件的生命周期对于开发者来说是至关重要的。Vue的生命周期指的是Vue实例从创建到销毁的一系列过程,每个阶段都对应着特定的生命周期钩子(或称为生命周期方法),允许我们在不同的时间点加入…...

PCIe总线-Linux内核PCIe软件框架分析(十一)

1.简介 Linux内核PCIe软件框架如下图所示,按照PCIe的模式,可分为RC和EP软件框架。RC的软件框架分为五层,第一层为RC Controller Driver,和RC Controller硬件直接交互,不同的RC Controller,其驱动实现也不相…...

视觉SLAM第二讲

SLAM分为定位和建图两个问题。 定位问题 定位问题是通过传感器观测数据直接或间接求解位置和姿态。 通常可以分为两类:基于已知地图的定位和基于未知地图的定位。 基于已知地图的定位 利用预先构建的地图,结合传感器数据进行全局定位。SLAM中的全局…...

mysql1055报错解决方法

目录 一、mysql版本 二、 问题描述 三、解决方法 1.方法一(临时) 2.方法二(永久) 一、mysql版本 mysql版本:5.7.23 二、 问题描述 在查询时使用group by语句,出现错误代码:1055&#xf…...

Java的@DateTimeFormat注解与@JsonFormat注解的使用对比

Java的DateTimeFormat注解与JsonFormat注解的使用对比 在Java开发中,处理日期和时间格式时,我们经常会使用到DateTimeFormat和JsonFormat注解。这两个注解主要用于格式化日期和时间,但在使用场景和功能上有所不同。本文将详细介绍这两个注解…...

德国云手机:企业移动办公解决方案

在现代商业环境中,移动办公已经成为一种趋势。德国云手机作为一种高效的解决方案,为企业提供了强大的支持。本文将探讨德国云手机如何优化企业的移动办公环境。 一、德国云手机的主要优势 高灵活性 德国云手机具有高度的灵活性,能够根据用户需…...

【React】useState:状态管理的基石

文章目录 一、什么是 useState?二、useState 的基本用法三、useState 的工作原理四、高级用法五、最佳实践 在现代前端开发中,React 是一个非常流行的库,而 useState 是 React 中最重要的 Hook 之一。useState 使得函数组件能够拥有自己的状态…...

商品中心关于缓存热key的解决方案

缓存热key一旦被击穿,流量势必会打到数据库,如果数据库崩了,游戏直接结束。 从两点来讨论:如何监控、如何解决。 如何监控 通过业务评估:比如营销活动推出的商品或者热卖的商品。基于LRU的命令,redis-cl…...

【Python系列】Parquet 数据处理与合并:高效数据操作实践

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

大脑自组织神经网络通俗讲解

大脑自组织神经网络的核心概念 大脑自组织神经网络,是指大脑中的神经元通过自组织的方式形成复杂的网络结构,从而实现信息的处理和存储。这一过程涉及到神经元的生长、连接和重塑,是大脑学习和记忆的基础。其核心公式涉及神经网络的权重更新…...

org.springframework.context.annotation.DeferredImportSelector如何使用?

DeferredImportSelector 是 Spring 框架中一个比较高级的功能,主要用于在 Spring 应用上下文的配置阶段延迟导入某些组件或配置。这个功能特别有用,比如在处理依赖于其他自动配置的场景,或者当你想基于某些条件来决定是否导入特定的配置类时。…...

缓慢变化维

缓慢变化维 缓慢变化维(Slowly Changing Dimensions,简称SCD)是数据仓库中的一个重要概念,用于处理维度表中数据随时间发生的变化。以下是一个具体的例子来描述缓慢变化维: 假设我们有一个销售数据仓库,其…...

Vue常用的指令都有哪些?都有什么作用?什么是自定义指令?

常用指令: 1、v-model 多用于表单元素实现双向数据绑定 (同angular中的ng-model) 2、v-for格式: v-for"字段名in(of)数组json"循环数组或json(同angular中的ng repeat),需要注意从vue2开始取消了$index 3、v-show 4、v-hide 隐藏内容 (同a…...

kettle从入门到精通 第八十一课 ETL之kettle kettle中的json对象字段写入postgresql中的json字段正确姿势

1、上一节可讲解了如何将json数据写入pg数据库表中的json字段,虽然实现了效果,但若客户继续使用表输出步骤则仍然无法解决问题。 正确的的解决方式是设置数据库连接参数stringtypeunspecified 2、stringtypeunspecified 参数的作用: 当设置…...

计算机网络实验-RIP配置与分析

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 一、相关知识 路由信息协议(Routing Information Protocol,RIP)是一种基于距离向量(Distance-Vector&…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要:在消费市场竞争日益激烈的当下,传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序,探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式,分析沉浸式体验的优势与价值…...