【算法/训练】:动态规划(线性DP)
一、路径类
1. 字母收集
思路:
1、预处理
对输入的字符矩阵我们按照要求将其转换为数字分数,由于只能往下和往右走,因此走到(i,j)的位置要就是从(i - 1, j)往下走,或者是从(i,j - 1)的位置往右走,由于我们要使得路程遍历积分最多,则应该从积分多的位置过来,
2、状态表示 dp[i][j] 表示:从[0, 0]出发,到底[i, j]位置,一共有多少分
3、状态转移方程
故(i,j)位置的积分应该为dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - 1 ]) + dp[ i ][ j ];
4、初始化
但是上面仅对于(i >= 1 && j >= 1)成立,对于第一行和第一列我们应该特殊处理,利用前缀和的知识可以求得,走到第一列的第i个位置最多能拿的积分以及走到第一行的第j个位置最多能拿的积分,然后我们就可以按照dp[ i ][ j ] = max(dp[ i - 1 ][ j ], dp[ i ][ j - 1 ]) + dp[ i ][ j ]的方法遍历每个节点即可
#include <iostream>
using namespace std;const int N = 1005;
int dp[N][N];int main() {int n, m;cin >> n >> m;char ch;for (int i = 0; i < n; i++){for (int j = 0; j < m; j++){cin >> ch;if (ch == 'l') dp[i][j] = 4;else if (ch == 'o') dp[i][j] = 3;else if (ch == 'v') dp[i][j] = 2;else if (ch == 'e') dp[i][j] = 1;else a[i][j] = 0;}}for (int i = 1; i < n; i++) dp[i][0] = dp[i - 1][0] + dp[i][0];
for (int j = 1; j < m; j++) dp[0][j] = dp[0][j - 1] + dp[0][j]; for (int i = 1; i < n; i++){for (int j = 1; j < m; j++){dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + dp[i][j];}}cout << dp[n - 1][m - 1] << endl;return 0;
}
2、[NOIP2002 普及组] 过河卒
分析:
思路:
1、状态表示
dp[i][j] 表示:从[0, 0]出发,到底[i, j]位置,一共有多少种方法
2、状态转移方程dp[ i ][ j ] = dp[ i - 1 ][ j ] + dp[i][j - 1] (i > 0 && j > 0)
当走到马可以走的地方,dp[ i ][ j ] = 0;
3、初始化先创建一个 dp[ n + 2 ][ m + 2 ],然后让dp[ 0 ][ 1 ] = 1 或者 dp[ 1 ][ 0 ] = 1。注意这样初始化的时候,x需要+1,y也需要+1.和dp表位置一一对应
#include <iostream>
#include <vector>
using namespace std;//int dp[1005][1005];
int main()
{int n, m, x, y;cin >> n >> m >> x >> y;vector<vector<long long>> dp(n + 2, vector<long long>(m + 2));dp[0][1] = 1;x += 1, y += 1;和dp表位置一一对应for (int i = 1; i <= n + 1; i++){for (int j = 1; j <= m + 1; j++) { //马所在位置if (i != x && j != y && abs(i - x) + abs(j - y) == 3 || (i == x && j == y)){dp[i][j] == 0;}else dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}cout << dp[n + 1][m + 1] << endl;return 0;
}
二、子序列和连续序列类
1. mari和shiny
🌈线性 dp
在维护 i 位置之前,⼀共有多少个 "s" "sh" ,然后更新 "shy" 的个数。
(1)状态表示
s[i]:字符串 str 中 [0, i] 区间内有多少个 "s"。
h[i]:字符串 str 中 [0, i] 区间内有多少个 "sh"。
y[i]:字符串 str 中 [0, i] 区间内有多少个 "shy。
(2)状态转移方程
(3)空间优化
用三个变量来表示即可
s:(字符串 str 中 [0, n-1] 区间内有多少个 "s")
h:(字符串 str 中 [0, n-1] 区间内有多少个 "sh")
y:(字符串 str 中 [0, n-1] 区间内有多少个 "shy")
最后的遍历结束后,y即我们需要的结果
#include <iostream>
#include <string>
using namespace std;
typedef long long ll;
int main()
{int n;string str;cin >> n >> str;ll s = 0, h = 0, y = 0;for (int i = 0; i < n; i++) {if (str[i] == 's') s++;else if (str[i] == 'h') h += s;else if (str[i] == 'y') y += h;}cout << y << endl;return 0;
}
🌈二维 dp
这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用 KMP。
(1)dp[i][j] 含义
- string t="shy"
dp[i][j]:以 i-1 为结尾的 str 子序列中出现以 j-1 为结尾的 t 的个数为 dp[i][j]。
(2)递推关系
- str[i - 1] 与 t[j - 1]相等
- str[i - 1] 与 t[j - 1] 不相等
当 str[i - 1] 与 t[j - 1]相等时,dp[i][j] 可以有两部分组成:
- 一部分是用 str[i - 1] 来匹配,那么个数为 dp[i - 1][j - 1]。即不需要考虑当前 str 子串和 t 子串的最后一位字母,所以只需要 dp[i-1][j-1]。
- 一部分是不用 str[i - 1] 来匹配,个数为 dp[i - 1][j]。
为什么还要考虑不用 str[i - 1] 来匹配,都相同了指定要匹配?
🧩例如: str:shyy 和 t:shy ,str[3] 和 t[2] 是相同的,但是字符串 str 也可以不用 str[3] 来匹配,即用 str[0]str[1]str[2] 组成的 "shy"。当然也可以用 str[3] 来匹配,即:str[0]str[1]str[3] 组成的 "shy"。所以,当 str[i - 1] 与 t[j - 1] 相等时,dp[ i ][ j ] = dp[ i - 1 ][ j - 1 ] + dp[ i - 1 ][ j ];
当 str[i - 1] 与 t[j - 1] 不相等时,dp[i][j] 只有一部分组成,不用 str[i - 1] 来匹配(就是模拟在 str 中删除这个元素),即:dp[i - 1][j],所以递推公式为:dp[ i ][ j ] = dp[ i - 1 ][ j ];
为什么只考虑 “不用 str[i - 1] 来匹配” 这种情况, 不考虑 “不用 t[j - 1] 来匹配” 的情况呢?
🧩这里要明确,我们求的是 str 中有多少个 t,而不是求 t 中有多少个 str,所以只考虑 str 中删除元素的情况,即不用 str[i - 1] 来匹配 的情况。
(3)状态转移方程
dp[i][j]显然要从dp[i-1][?]递推而来。立即思考dp[i-1][j], dp[i-1][j-1]分别与dp[i][j]的关系。因为少一个字符,自然而然从当前字符着手。考察si的第i个字符(表为s[i])和tj的第j个字符(表为t[j])的关系。
若s[i] ≠ t[j]:那么s_i中的所有t_j子序列,必不包含s[i],即s_i-1和s_i中tj的数量是一样的,得到该情形的转移方程: dp[ i ][ j ] = dp[ i -1 ][ j ]
若s[i] = t[j]:假设s_i中的所有t_j子序列中,包含s[i]的有a个,不包含的有b个。s_i中包含s[i]的子序列个数相当于s_i-1中t_j-1的个数,不包含s[i]的子序列个数与上一种情况一样,于是得到该情形的转移方程:
a = dp[ i -1 ][ j -1 ] b = dp[ i-1 ][ j ] dp[ i ][ j ] = a + b = dp[i-1][j-1] + dp[i-1][j]
(4)遍历顺序
从上到下,从左到右。
#include <iostream>
#include <vector>using namespace std;int main()
{int n;cin >> n;string str;cin >> str;string t="shy";int m=t.size();vector<vector<long long>> dp(n+1, vector<long long>(m+1));for(int i=0; i<=n; i++) dp[i][0]=1;for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){if(str[i-1]==t[j-1])dp[i][j]=dp[i-1][j-1]+dp[i-1][j];elsedp[i][j]=dp[i-1][j];}}cout << dp[n][m] << endl;return 0;
}
2. 不同的子序列
该题于上题不一样的是,上面给定了t的具体字符串,而这里没有给定,但是我们也需要用二维dp的方法来写。
(1)dp[i][j] 含义
s[ i ]的子序列中在t[ j ]出现的次数
s[ i ]表示s从下标 i 到末尾的子字符串。
t[ j ]表示t从下标 j 到末尾的子字符串。
(2)递推关系
- 分别令两个维度为0,推测边界。
- dp[0][j]表示s_0中t_j的个数。s_0是空字符串,只有当j=0时,才有dp[0][j] = 1,表示s子空串中有一个t子空串,否则dp[0][j] = 0,因为一个空串不可能包含一个非空串。
dp[i][0]表示s_i中t0的个数。t_0是空字符串,显然任何串(包括空串)都含有一个空子串。因此dp[i][0] = 1。
注意到,dp[i][0] = 1实际上已经包含了dp[0][j] = 1的情形。
(3)初始化
- dp[i][0] 表示:以 i-1 为结尾的 str 可以随便删除元素,出现空字符串的个数。所以,dp[i][0] 一定都是 1,因为也就是把以 i-1 为结尾的 str,删除所有元素,出现空字符串的个数就是 1。
- dp[0][j] 表示:空字符串 str 可以随便删除元素,出现以 j-1 为结尾的字符串 t 的个数。所以,dp[0][j] 一定都是 0,因为 str 如论如何也变成不了 t。
- dp[0][0] 表示:空字符串 str 可以删除 0 个元素,变成空字符串 t。所以,dp[0][0] = 1。
(4)遍历顺序
从上到下,从左到右。
int numDistinct(string s, string t) {int n = s.size(), m = t.size();if (n < m) return 0;vector<vector<unsigned int>> dp(n + 1, vector<unsigned int>(m + 1)); //注意是unsigned intfor (int i = 0; i <= n; i++) dp[i][0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {dp[i][j] = dp[i - 1][j] +(s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] : 0);}}return dp[n][m];
}
相关文章:

【算法/训练】:动态规划(线性DP)
一、路径类 1. 字母收集 思路: 1、预处理 对输入的字符矩阵我们按照要求将其转换为数字分数,由于只能往下和往右走,因此走到(i,j)的位置要就是从(i - 1, j)往下走&#…...
计算巨头 Azure、AWS 和 GCP 的比较
云计算领域由三大主要参与者主导:Microsoft Azure、Amazon Web Services (AWS) 和 Google Cloud Platform (GCP)。每个平台都为希望利用云提供基础设施、平台服务等的企业提供强大的功能。在本文中,我们将深入探讨这些平台之间的差异,重点关注…...
Thinkphp5跨域问题常见的处理方法
在ThinkPHP5中,处理跨域问题通常涉及配置中间件或直接在控制器中设置响应头。以下是几种常见的解决跨域问题的方法: 1. 使用中间件处理跨域 你可以创建一个中间件来专门处理跨域请求。这个中间件会检查请求的来源,并设置相应的响应头来允许…...

Matlab编程资源库(9)数据插值与曲线拟合
一、一维数据插值 在MATLAB中,实现这些插值的函数是interp1,其调用格式为: Y1interp1(X,Y,X1,method) 函数根据X,Y的值,计算函数在X1处的值。X,Y是两个等长的已知向量,分别描述采样点和样本值,X1是一个向量…...

matplotlib的科研绘图辅助
matplotlib的科研绘图辅助 趁着暑假,与和鲸科技合作了一个python绘图的教程,作为暑期夏令营的一小部分,主要内容是介绍如何使用matplotlib、pandas、seaborn和plotnine进行医学科研绘图,感兴趣的可以通过如下地址进行访问&#x…...

C++内存管理(候捷)第五讲 笔记
GNU C对allocators的描述 new_allocator 和malloc_allocator,它们都没有特别的动作,无非底部调用operator new和malloc。它们没有用内存池 区别:::operator new是可重载的 智能型的allocator,使用内存池,分一大块然后…...

谷粒商城实战笔记-63-商品服务-API-品牌管理-OSS获取服务端签名
文章目录 一,创建第三方服务模块thrid-party1,创建一个名为gulimall-third-party的模块2,nacos上创建third-party命名空间,用来管理这个服务的所有配置3,配置pom文件4,配置文件5,单元测试6&…...

详细介绍BIO、NIO、IO多路复用(select、poll、epoll)
BIO、NIO、IO多路复用 BIO(Blocking IO)NIO(Non-blocking IO) 同步非阻塞IOIO多路复用selectpollepoll Redis的IO多路复用 BIO(Blocking IO) 最基础的IO模型,当进行IO操作时,线程会被阻塞,直到操作完成。 比如read和write,通常IO…...

昇思25天学习打卡营第11天|xiaoyushao
今天分享ResNet50迁移学习。 在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提…...

为什么样本方差(sample variance)的分母是 n-1?
样本均值与样本方差的定义 首先来看一下均值,方差,样本均值与样本方差的定义 总体均值的定义: μ 1 n ∑ i 1 n X i \mu\frac{1}{n}\sum_{i1}^{n} X_i μn1i1∑nXi 也就是将总体中所有的样本值加总除以个数,也可以叫做总…...

编解码器架构
一、定义 0、机器翻译是序列转换模型的一个核心问题, 其输入和输出都是长度可变的序列。 为了处理这种类型的输入和输出, 我们设计一个包含两个主要组件的架构: 第一个组件是一个编码器(encoder): 它接受一…...
追问试面试系列:JVM运行时数据区
hi 欢迎来到追问试面试系列之JVM运行时数据区,在面试中出现频率非常高,并且其中还存在一些误导性的面试,一定要注意。 什么误导性呢?面试中,有的面试官本来是想问JVM运行时数据区,不过提问时难免有些让你觉得很不爽。比如:你说说java内存模型,还比如说说JVM内存模型,…...

React Native在移动端落地实践
在移动互联网产品迅猛发展的今天,技术的不断创新使得企业越来越注重降低成本、提升效率。为了在有限的开发资源下迅速推出高质量、用户体验好的产品,以实现公司发展,业界催生了许多移动端跨平台解决方案。这些方案不仅简化了开发流程…...

《操作系统》(学习笔记)(王道)
一、计算机系统概述 1.1 操作系统的基本概念 1.1.1 操作系统的概念 1.1.2 操作系统的特征 1.1.3 操作系统的目标和功能 1.2 操作系统的发展与分类 1.2.1 手工操作阶段(此阶段无操作系统) 1.2.2 批处理阶段(操作系统开始出现࿰…...

LabVIEW学习-LabVIEW处理带分隔符的字符串从而获取数据
带分隔符的字符串很好处理,只需要使用"分隔符字符串至一维字符串数组"函数或者"一维字符串数组至分隔符字符串"函数就可以很轻松地处理带分隔符地字符串。 这两个函数所在的位置为: 函数选板->字符串->附加字符串函数->分…...

freesql简单使用操作mysql数据库
参考:freesql中文官网指南 | FreeSql 官方文档 这两天准备做一个测试程序,往一个系统的数据表插入一批模拟设备数据,然后还要模拟设备终端发送数据包,看看系统的承压能力。 因为系统使用的第三方框架中用到了freesql,…...
使用Java和Spring Retry实现重试机制
使用Java和Spring Retry实现重试机制 大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将探讨如何在Java中使用Spring Retry来实现重试机制。重试机制在处理临时性故障和提高系统稳…...
Linux Vim教程(十):自定义配置与插件管理
目录 1. 概述 2. Vim 配置文件 2.1 .vimrc 文件 2.2 .gvimrc 文件 3. 自定义配置 3.1 自定义快捷键 3.2 自动命令 3.3 函数定义 4. 插件管理 4.1 插件管理工具 4.1.1 安装 vim-plug 4.1.2 配置 vim-plug 4.1.3 安装插件 4.2 常用插件 4.2.1 NERDTree 4.2.2 Fzf…...

代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?
代理IP协议是一种网络代理技术,可以实现隐藏客户端IP地址、加速网站访问、过滤网络内容、访问内网资源等功能。常用的IP代理协议主要有Socks5代理、HTTP代理、HTTPS代理这三种。代理IP协议主要用于分组交换计算机通信网络的互联系统中使用,只负责数据的路…...

Verilog语言和C语言的本质区别是什么?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「C语言的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 用老石的一句话其实很好说…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...