猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
摘要
Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示例和操作指南,无论你是 小白 还是 大佬,都能轻松掌握这一重要知识点。
猫头虎是谁?
大家好,我是 猫头虎,别名猫头虎博主,擅长的技术领域包括云原生、前端、后端、运维和AI。我的博客主要分享技术教程、bug解决思路、开发工具教程、前沿科技资讯、产品评测图文、产品使用体验图文、产品优点推广文稿、产品横测对比文稿,以及线下技术沙龙活动参会体验文稿。内容涵盖云服务产品评测、AI产品横测对比、开发板性能测试和技术报告评测等。
目前,我活跃在CSDN、51CTO、腾讯云开发者社区、阿里云开发者社区、知乎、微信公众号、视频号、抖音、B站和小红书等平台,全网拥有超过30万的粉丝,统一IP名称为 猫头虎 或者 猫头虎博主。希望通过我的分享,帮助大家更好地了解和使用各类技术产品。
原创作者 ✍️
- 博主:猫头虎
- 全网搜索关键词:猫头虎
- 作者微信号:Libin9iOak
- 作者公众号:猫头虎技术团队
- 更新日期:2024年6月16日
- 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!
专栏链接 🔗
- 精选专栏:
- 《面试题大全》 — 面试准备的宝典!
- 《IDEA开发秘籍》 — 提升你的IDEA技能!
- 《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!
- 《100天精通Golang(基础入门篇)》 — 踏入Go语言世界的第一步!
- 《100天精通Go语言(精品VIP版)》 — 踏入Go语言世界的第二步!
领域矩阵 🌐
- 猫头虎技术领域矩阵:
- 猫头虎技术矩阵
- 新矩阵备用链接
加入猫头虎的技术圈,一起探索编程世界的无限可能! 🚀
文章目录
- 🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
- 摘要
- 猫头虎是谁?
- 原创作者 ✍️
- 专栏链接 🔗
- 领域矩阵 🌐
- 加入猫头虎的技术圈,一起探索编程世界的无限可能! 🚀
- 引言
- 正文
- 1. 什么是np.random.randn()? 🌟
- 2. 基本用法 🛠️
- 3. 多维数组的生成 📊
- 4. np.random.randn()的实际应用 🏷️
- 数据模拟
- 机器学习中的数据标准化
- 5. 常见问题解答 (QA) 💡
- 小结 ✨
- 参考资料 📚
- 表格总结本文核心知识点
- 总结
- 未来展望 🚀
- 联系与版权声明 📩
引言
大家好,我是猫头虎。今天我们来聊聊 Numpy 中的一个关键函数——np.random.randn()。它在生成标准正态分布数据方面有着广泛的应用。不论你是在进行数据模拟还是机器学习建模,这个函数都是必不可少的。
正文

1. 什么是np.random.randn()? 🌟
np.random.randn() 是 Numpy 提供的一个函数,用于生成标准正态分布(均值为0,标准差为1)的随机数。
标准正态分布:又称高斯分布,是概率论中非常重要的一种连续型分布。
2. 基本用法 🛠️
让我们先看看 np.random.randn() 的基本用法:
import numpy as np# 生成一个标准正态分布的随机数
random_number = np.random.randn()
print(random_number)# 生成一个包含10个标准正态分布随机数的数组
random_array = np.random.randn(10)
print(random_array)
3. 多维数组的生成 📊
你可以使用 np.random.randn() 生成多维数组:
# 生成一个3x3的标准正态分布数组
random_matrix = np.random.randn(3, 3)
print(random_matrix)
通过上面的代码,你可以看到 np.random.randn() 是多么强大和便捷。
4. np.random.randn()的实际应用 🏷️
数据模拟
在数据科学中,常常需要模拟数据来测试模型。使用 np.random.randn() 可以快速生成符合标准正态分布的数据:
# 生成模拟数据
simulated_data = np.random.randn(1000)
print(simulated_data)
机器学习中的数据标准化
在机器学习中,标准化数据是常见的预处理步骤。np.random.randn() 可以帮助我们快速生成标准化后的数据。
5. 常见问题解答 (QA) 💡
Q1: np.random.randn() 与 np.random.normal() 有何区别?
A1:
np.random.randn()生成的是均值为0,标准差为1的标准正态分布数据。而np.random.normal()则允许指定均值和标准差。
Q2: 生成的随机数是如何分布的?
A2: 使用
np.random.randn()生成的数值遵循标准正态分布,即大部分数值集中在0附近,且分布呈钟形曲线。
小结 ✨
np.random.randn() 是 Numpy 中一个非常实用的函数,无论是进行数据模拟还是机器学习预处理,都有广泛的应用。希望通过本文的介绍,你能够更好地理解和使用这个函数。
参考资料 📚
- Numpy 官方文档
- 机器学习实战
表格总结本文核心知识点
| 关键点 | 说明 |
|---|---|
np.random.randn() 基本用法 | 生成标准正态分布的随机数 |
| 多维数组生成 | 可以生成任意形状的多维标准正态分布数组 |
| 实际应用 | 数据模拟、机器学习中的数据标准化等 |
| 常见问题解答 | 与 np.random.normal() 的区别,生成的随机数分布特点等 |
总结
通过对 np.random.randn() 的学习,我们了解了其基本用法、多维数组生成以及实际应用。这个函数在数据科学和机器学习中扮演着重要角色,掌握它将为你的项目带来极大帮助。
未来展望 🚀
未来,我们还将探讨更多 Numpy 中的强大函数,以及它们在实际应用中的案例。如果你有任何疑问,欢迎点击下方名片,了解更多详细信息!
猫头虎
专注于技术和科技领域的博主
👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击下方文末名片获取更多信息。我是猫头虎博主,期待与您的交流! 🦉💬

联系与版权声明 📩
- 联系方式:
- 微信: Libin9iOak
- 公众号: 猫头虎技术团队
- 版权声明:
本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页。
点击✨⬇️下方名片⬇️✨,加入猫头虎领域社群矩阵。一起探索科技的未来,共同成长。🚀
温馨提示:如果对本文有任何疑问,欢迎点击下方名片,了解更多详细信息!
相关文章:
猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn() 摘要 Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示…...
QT 关于QTableWidget的常规使用
目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…...
PyCharm 常用 的插件
Material Theme UI Lite:提供多种不同的页面风格,为PyCharm界面增添个性化元素。Chinese (Simplified) Language Pack:为中文用户提供简体中文的界面、菜单、提示信息,提升使用体验。Tabnine:基于人…...
理解 HTTP 请求中 Query 和 Body 的异同
本文将深入探讨HTTP请求中的两个关键要素:查询参数(Query)和请求体(Body)。我们将阐明它们之间的差异,并讨论在何种情况下使用每一种。 HTTP 请求概述 HTTP 请求是客户端(如浏览器)…...
【AI大模型】 企业级向量数据库的选择与实战
前言 ChatGPT4相比于ChatGPT3.5,有着诸多不可比拟的优势,比如图片生成、图片内容解析、GPTS开发、更智能的语言理解能力等,但是在国内使用GPT4存在网络及充值障碍等问题,如果您对ChatGPT4.0感兴趣,可以私信博主为您解决账号和环境…...
LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning)
要掌握LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning),你需要理解整个过程从数据准备到最终部署的各个环节。下面是这一流程的一个概览,并提供了一些关键步骤和技术点: 1. LangChain开发框架简介 La…...
VMware安装(有的时候启动就蓝屏建议换VM版本)
当你开始使用虚拟化技术来管理和运行多个操作系统时,VMware 是一个强大且广泛使用的选择。本篇博客将指导你如何安装 VMware Workstation Pro,这是一个功能强大的虚拟机软件,适用于个人和专业用户。 一、下载 VMware Workstation Pro 访问官网…...
AV1技术学习:Quantization
量化是对变换系数进行,并将量化索引熵编码。AV1的量化参数 QP 的取值范围是0 ~ 255。 一、Quantization Step Size 在给定的 QP 下,DC 系数的量化步长小于 AC 系数的量化步长。DC 系数和 AC 系数从 QP 到量化步长的映射如下图所示。当 QP 为 0 时&…...
vllm部署记录
1. pip安装 pip install vllm 下载模型在huggingface.co 注意在modelscope上的这个opt-125m好像不行了,我git不下来报错 启动服务 vllm serve opt-125m --model opt-125m --port 8888 第一个opt-125m是名字,可以在vllm支持的模型中查到,第二个是模型存放文件夹及其路径…...
HTML前端 盒模型及常见的布局 流式布局 弹性布局 网格布局
CSDN的文章没有“树状目录管理”,所以我在这里整理几篇相关的博客链接。 操作有些麻烦。 CSS 两种盒模型 box-sizing content-box 和 border-box 流式布局 flow layout 弹性布局 flex layout HTML CSS 网格布局 grid layout HTML CSS...
网络安全 DVWA通关指南 DVWA Command Injection(命令注入)
DVWA Command Injection(命令注入) 文章目录 DVWA Command Injection(命令注入)LowMediumHighImpossible Low 1、分析网页源代码 <?php// 当表单提交按钮(Submit)被触发时执行以下代码 if (isset($_P…...
VUE3学习第三篇:报错记录
1、在我整理好前端代码框架后,而且也启动好了对应的后台服务,访问页面,正常。 2、报错ReferenceError: defineModel is not defined 学到这里报错了 在vue网站的演练场,使用没问题 但是在我自己的代码里就出问题了 3、watchEffec…...
CentOS怎么关闭自动锁屏?
禁止自动锁屏 有时候几分钟不用Centos,系统就自动锁屏了,这是一种安全措施,防止别人趁你不在时使用你的系统。但对于大部分人而言,这是没有必要的,尤其是Centos虚拟机,里面没啥重要的东西,每次…...
vscode 环境
这张截图显示的是在VS Code(Visual Studio Code)中选择Python解释器的界面。不同的Python解释器及其虚拟环境列出了可选项,用户可以根据需要选择合适的解释器来运行Python代码。以下是对截图中信息的详细解释: 解释器选择界面 当…...
浏览器自动化测试工具selenium——爬虫操作记录
selenium——是一款web自动化测试框架,其能模拟正常的用户操作,比如点击。但selenium并不是浏览器,没有执行js和解析html/css的能力,因此selenium需要和浏览器配合使用。 因为selenium可以模仿用户行为,因此selenium也…...
微信小程序配置访问服务器失败所发现的问题及解决方案
目录 事前现象问题1:问题现象:问题分析: 问题2:问题现象:问题分析:解决方案: 事后现象 事前现象 问题1: 问题现象: 在本地调试时,一切顺利,但一…...
javaEE(1)
一. Web开发概述 Web开发:指的是从网页中向后端程序发送请求,与后端程序进行交互 Web服务器:是一种软件,向浏览器等Web客户端提供文档等数据,实现数据共享,它是一个容器,是一个连接用户和程序之间的中间键 二. Web开发环境搭建 我们要实现前后端交互,首先需要中间键Web服务…...
极简Springboot+Mybatis-Plus+Vue零基础萌新都看得懂的分页查询(富含前后端项目案例)
目录 springboot配置相关 依赖配置 yaml配置 MySQL创建与使用 (可拿软件包项目系统) 创建数据库 创建数据表 mybatis-plus相关 Mapper配置 编辑 启动类放MapperScan 启动类中配置 添加config配置文件 Springboot编码 实体类 mapperc(Dao…...
IPython的Bash之舞:%%bash命令全解析
IPython的Bash之舞:%%bash命令全解析 IPython的%%bash魔术命令为Jupyter Notebook用户提供了一种在单元格中直接执行Bash脚本的能力。这个特性特别适用于需要在Notebook中运行系统命令或Bash特定功能的场景。本文将详细介绍如何在IPython中使用%%bash命令ÿ…...
ST Stellar-E SR5E1 22KW OBC combo 3KW DC-DC汽车充电器解决方案
对于全球的环境保护意识抬头,全球的汽车产业慢慢步入电动化的时代,以减少碳排放。整车系统主要是由电池、电驱、电控的三电所构成,其中电池系统是整车的动力来源,而对电池充电的OBC系统更甚重要。一具高度安全性且高效的OBC系统&a…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
