当前位置: 首页 > news >正文

Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析

NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤:

  1. 安装 NetworkX

    pip install networkx
    
  2. 创建图
    NetworkX 支持多种类型的图,包括无向图、有向图、加权图等。

    import networkx as nx# 创建一个无向图
    G = nx.Graph()# 添加节点
    G.add_node(1)
    G.add_nodes_from([2, 3, 4])# 添加边
    G.add_edge(1, 2)
    G.add_edges_from([(2, 3), (3, 4), (4, 1)])
    
  3. 读取和写入图
    可以从各种格式读取图数据或将图数据写入文件。

    # 从边列表文件读取图
    G = nx.read_edgelist('path_to_edgelist.txt')# 将图写入边列表文件
    nx.write_edgelist(G, 'path_to_output_edgelist.txt')
    
  4. 绘制图
    使用 Matplotlib 库绘制图。

    import matplotlib.pyplot as plt# 绘制图
    nx.draw(G, with_labels=True)
    plt.show()
    
  5. 基本网络分析

    计算基本属性

    # 节点数量和边数量
    num_nodes = G.number_of_nodes()
    num_edges = G.number_of_edges()# 度(每个节点的连接数)
    degrees = dict(G.degree())print(f'节点数量: {num_nodes}, 边数量: {num_edges}')
    print(f'节点度: {degrees}')
    

    计算路径和中心性

    # 最短路径
    shortest_path = nx.shortest_path(G, source=1, target=3)
    print(f'节点1到节点3的最短路径: {shortest_path}')# 度中心性
    degree_centrality = nx.degree_centrality(G)
    print(f'度中心性: {degree_centrality}')# 介数中心性
    betweenness_centrality = nx.betweenness_centrality(G)
    print(f'介数中心性: {betweenness_centrality}')# 特征向量中心性
    eigenvector_centrality = nx.eigenvector_centrality(G)
    print(f'特征向量中心性: {eigenvector_centrality}')
    
  6. 高级网络分析

    社区发现
    使用 NetworkX 提供的算法或集成其他库(如 community)进行社区发现。

    import community as community_louvain# 计算社区
    partition = community_louvain.best_partition(G)
    print(f'社区划分: {partition}')
    

    图的连通性和子图

    # 判断图是否连通
    is_connected = nx.is_connected(G)
    print(f'图是否连通: {is_connected}')# 找到图中的所有连通子图
    subgraphs = [G.subgraph(c).copy() for c in nx.connected_components(G)]
    for i, sg in enumerate(subgraphs):print(f'连通子图{i}: 节点 - {sg.nodes()}, 边 - {sg.edges()}')
    
  7. 应用案例

    社交网络分析

    # 构建社交网络图
    social_network = nx.Graph()
    social_network.add_edges_from([('Alice', 'Bob'),('Alice', 'Charlie'),('Bob', 'Charlie'),('Bob', 'David'),('Charlie', 'David')
    ])# 绘制社交网络图
    nx.draw(social_network, with_labels=True)
    plt.show()# 计算社交网络的基本属性
    print(f'节点数量: {social_network.number_of_nodes()}')
    print(f'边数量: {social_network.number_of_edges()}')
    print(f'度中心性: {nx.degree_centrality(social_network)}')
    

这些步骤和示例代码展示了如何使用 NetworkX 进行复杂网络分析。根据你的具体需求,可以进一步扩展和定制这些分析方法。如果你有特定的网络分析问题或更复杂的应用场景,可以进一步探讨。

相关文章:

Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析

NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤: 安装 NetworkX: pip inst…...

【C#/C++】C#调C++的接口,给C++传结构体数组

C#调C的接口,给C传结构体数组 1、背景2、实现 1、背景 C#软件创建了一个结构体数组用来存储图像的区域信息,分别是矩形框的左上像素的xy坐标和矩形框右下像素的xy坐标。需要传入给调用的C函数的参数列表中,我们选择使用C#传入一个结构体数组…...

ctfshow SSTI注入 web369--web372

web369 这把request过滤了,只能自己拼字符了 ""[[__clas,s__]|join] 或者 ""[(__clas,s__)|join] 相当于 ""["__class__"]举个例子,chr(97) 返回的是字符 a,因为 97 是小写字母 a 的 Unicode 编码…...

Llama + Dify,在你的电脑搭建一套AI工作流

theme: smartblue 点赞 关注 收藏 学会了 本文简介 最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。 那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了&…...

洛谷 P9854 [CCC 2008 J1] Body Mass Index

这题让我们计算出 BMI 值,随后判断属于哪个等级。 BMI 值计算公式: ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​。 BMI 范围 对应信息 …...

Redis面试三道题目

针对Redis的面试题,我将从简单到困难给出三道题目,并附上参考答案的概要。 1. 简单题:请简述Redis是什么,以及它的主要优点。 参考答案: Redis简介:Redis是一个开源的、使用ANSI C语言编写、支持网络、可…...

redis的使用场景-分布式锁

使用redis的setnx命令放入数据并用此数据当锁完成业务(但是如果用户操作途中出现异常导致超出指定时间会出现问题) Service public class StockService {Autowiredprivate StockDao stockDao; //mapper注入Autowiredprivate StringRedisTemplate redisT…...

知识库系统全解析:2024年最佳9款

本文将分享9款优质团队知识库管理工具:PingCode、Worktile、石墨文档、语雀、Wolai 我来、有道云笔记、飞书文档、Confluence、Notion。 在追求高效团队运作的今天,掌握和整合知识成为了企业不可或缺的需求。但面对市场上琳琅满目的知识库管理工具&#…...

猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()

🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn() 摘要 Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示…...

QT 关于QTableWidget的常规使用

目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…...

PyCharm 常用 的插件

Material Theme UI Lite:‌提供多种不同的页面风格,‌为PyCharm界面增添个性化元素。‌Chinese (Simplified) Language Pack:‌为中文用户提供简体中文的界面、‌菜单、‌提示信息,‌提升使用体验。‌Tabnine:‌基于人…...

理解 HTTP 请求中 Query 和 Body 的异同

本文将深入探讨HTTP请求中的两个关键要素:查询参数(Query)和请求体(Body)。我们将阐明它们之间的差异,并讨论在何种情况下使用每一种。 HTTP 请求概述 HTTP 请求是客户端(如浏览器&#xff09…...

【AI大模型】 企业级向量数据库的选择与实战

前言 ChatGPT4相比于ChatGPT3.5,有着诸多不可比拟的优势,比如图片生成、图片内容解析、GPTS开发、更智能的语言理解能力等,但是在国内使用GPT4存在网络及充值障碍等问题,如果您对ChatGPT4.0感兴趣,可以私信博主为您解决账号和环境…...

LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning)

要掌握LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning),你需要理解整个过程从数据准备到最终部署的各个环节。下面是这一流程的一个概览,并提供了一些关键步骤和技术点: 1. LangChain开发框架简介 La…...

VMware安装(有的时候启动就蓝屏建议换VM版本)

当你开始使用虚拟化技术来管理和运行多个操作系统时,VMware 是一个强大且广泛使用的选择。本篇博客将指导你如何安装 VMware Workstation Pro,这是一个功能强大的虚拟机软件,适用于个人和专业用户。 一、下载 VMware Workstation Pro 访问官网…...

AV1技术学习:Quantization

量化是对变换系数进行,并将量化索引熵编码。AV1的量化参数 QP 的取值范围是0 ~ 255。 一、Quantization Step Size 在给定的 QP 下,DC 系数的量化步长小于 AC 系数的量化步长。DC 系数和 AC 系数从 QP 到量化步长的映射如下图所示。当 QP 为 0 时&…...

vllm部署记录

1. pip安装 pip install vllm 下载模型在huggingface.co 注意在modelscope上的这个opt-125m好像不行了,我git不下来报错 启动服务 vllm serve opt-125m --model opt-125m --port 8888 第一个opt-125m是名字,可以在vllm支持的模型中查到,第二个是模型存放文件夹及其路径…...

HTML前端 盒模型及常见的布局 流式布局 弹性布局 网格布局

CSDN的文章没有“树状目录管理”,所以我在这里整理几篇相关的博客链接。 操作有些麻烦。 CSS 两种盒模型 box-sizing content-box 和 border-box 流式布局 flow layout 弹性布局 flex layout HTML CSS 网格布局 grid layout HTML CSS...

网络安全 DVWA通关指南 DVWA Command Injection(命令注入)

DVWA Command Injection&#xff08;命令注入&#xff09; 文章目录 DVWA Command Injection&#xff08;命令注入&#xff09;LowMediumHighImpossible Low 1、分析网页源代码 <?php// 当表单提交按钮&#xff08;Submit&#xff09;被触发时执行以下代码 if (isset($_P…...

VUE3学习第三篇:报错记录

1、在我整理好前端代码框架后&#xff0c;而且也启动好了对应的后台服务&#xff0c;访问页面&#xff0c;正常。 2、报错ReferenceError: defineModel is not defined 学到这里报错了 在vue网站的演练场&#xff0c;使用没问题 但是在我自己的代码里就出问题了 3、watchEffec…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...