Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤:
-
安装 NetworkX:
pip install networkx
-
创建图:
NetworkX 支持多种类型的图,包括无向图、有向图、加权图等。import networkx as nx# 创建一个无向图 G = nx.Graph()# 添加节点 G.add_node(1) G.add_nodes_from([2, 3, 4])# 添加边 G.add_edge(1, 2) G.add_edges_from([(2, 3), (3, 4), (4, 1)])
-
读取和写入图:
可以从各种格式读取图数据或将图数据写入文件。# 从边列表文件读取图 G = nx.read_edgelist('path_to_edgelist.txt')# 将图写入边列表文件 nx.write_edgelist(G, 'path_to_output_edgelist.txt')
-
绘制图:
使用 Matplotlib 库绘制图。import matplotlib.pyplot as plt# 绘制图 nx.draw(G, with_labels=True) plt.show()
-
基本网络分析:
计算基本属性:
# 节点数量和边数量 num_nodes = G.number_of_nodes() num_edges = G.number_of_edges()# 度(每个节点的连接数) degrees = dict(G.degree())print(f'节点数量: {num_nodes}, 边数量: {num_edges}') print(f'节点度: {degrees}')
计算路径和中心性:
# 最短路径 shortest_path = nx.shortest_path(G, source=1, target=3) print(f'节点1到节点3的最短路径: {shortest_path}')# 度中心性 degree_centrality = nx.degree_centrality(G) print(f'度中心性: {degree_centrality}')# 介数中心性 betweenness_centrality = nx.betweenness_centrality(G) print(f'介数中心性: {betweenness_centrality}')# 特征向量中心性 eigenvector_centrality = nx.eigenvector_centrality(G) print(f'特征向量中心性: {eigenvector_centrality}')
-
高级网络分析:
社区发现:
使用 NetworkX 提供的算法或集成其他库(如community
)进行社区发现。import community as community_louvain# 计算社区 partition = community_louvain.best_partition(G) print(f'社区划分: {partition}')
图的连通性和子图:
# 判断图是否连通 is_connected = nx.is_connected(G) print(f'图是否连通: {is_connected}')# 找到图中的所有连通子图 subgraphs = [G.subgraph(c).copy() for c in nx.connected_components(G)] for i, sg in enumerate(subgraphs):print(f'连通子图{i}: 节点 - {sg.nodes()}, 边 - {sg.edges()}')
-
应用案例:
社交网络分析:
# 构建社交网络图 social_network = nx.Graph() social_network.add_edges_from([('Alice', 'Bob'),('Alice', 'Charlie'),('Bob', 'Charlie'),('Bob', 'David'),('Charlie', 'David') ])# 绘制社交网络图 nx.draw(social_network, with_labels=True) plt.show()# 计算社交网络的基本属性 print(f'节点数量: {social_network.number_of_nodes()}') print(f'边数量: {social_network.number_of_edges()}') print(f'度中心性: {nx.degree_centrality(social_network)}')
这些步骤和示例代码展示了如何使用 NetworkX 进行复杂网络分析。根据你的具体需求,可以进一步扩展和定制这些分析方法。如果你有特定的网络分析问题或更复杂的应用场景,可以进一步探讨。
相关文章:
Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤: 安装 NetworkX: pip inst…...
【C#/C++】C#调C++的接口,给C++传结构体数组
C#调C的接口,给C传结构体数组 1、背景2、实现 1、背景 C#软件创建了一个结构体数组用来存储图像的区域信息,分别是矩形框的左上像素的xy坐标和矩形框右下像素的xy坐标。需要传入给调用的C函数的参数列表中,我们选择使用C#传入一个结构体数组…...
ctfshow SSTI注入 web369--web372
web369 这把request过滤了,只能自己拼字符了 ""[[__clas,s__]|join] 或者 ""[(__clas,s__)|join] 相当于 ""["__class__"]举个例子,chr(97) 返回的是字符 a,因为 97 是小写字母 a 的 Unicode 编码…...
Llama + Dify,在你的电脑搭建一套AI工作流
theme: smartblue 点赞 关注 收藏 学会了 本文简介 最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。 那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了&…...
洛谷 P9854 [CCC 2008 J1] Body Mass Index
这题让我们计算出 BMI 值,随后判断属于哪个等级。 BMI 值计算公式: 。 BMI 范围 对应信息 …...
Redis面试三道题目
针对Redis的面试题,我将从简单到困难给出三道题目,并附上参考答案的概要。 1. 简单题:请简述Redis是什么,以及它的主要优点。 参考答案: Redis简介:Redis是一个开源的、使用ANSI C语言编写、支持网络、可…...
redis的使用场景-分布式锁
使用redis的setnx命令放入数据并用此数据当锁完成业务(但是如果用户操作途中出现异常导致超出指定时间会出现问题) Service public class StockService {Autowiredprivate StockDao stockDao; //mapper注入Autowiredprivate StringRedisTemplate redisT…...

知识库系统全解析:2024年最佳9款
本文将分享9款优质团队知识库管理工具:PingCode、Worktile、石墨文档、语雀、Wolai 我来、有道云笔记、飞书文档、Confluence、Notion。 在追求高效团队运作的今天,掌握和整合知识成为了企业不可或缺的需求。但面对市场上琳琅满目的知识库管理工具&#…...

猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn() 摘要 Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示…...
QT 关于QTableWidget的常规使用
目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…...

PyCharm 常用 的插件
Material Theme UI Lite:提供多种不同的页面风格,为PyCharm界面增添个性化元素。Chinese (Simplified) Language Pack:为中文用户提供简体中文的界面、菜单、提示信息,提升使用体验。Tabnine:基于人…...

理解 HTTP 请求中 Query 和 Body 的异同
本文将深入探讨HTTP请求中的两个关键要素:查询参数(Query)和请求体(Body)。我们将阐明它们之间的差异,并讨论在何种情况下使用每一种。 HTTP 请求概述 HTTP 请求是客户端(如浏览器)…...
【AI大模型】 企业级向量数据库的选择与实战
前言 ChatGPT4相比于ChatGPT3.5,有着诸多不可比拟的优势,比如图片生成、图片内容解析、GPTS开发、更智能的语言理解能力等,但是在国内使用GPT4存在网络及充值障碍等问题,如果您对ChatGPT4.0感兴趣,可以私信博主为您解决账号和环境…...

LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning)
要掌握LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning),你需要理解整个过程从数据准备到最终部署的各个环节。下面是这一流程的一个概览,并提供了一些关键步骤和技术点: 1. LangChain开发框架简介 La…...

VMware安装(有的时候启动就蓝屏建议换VM版本)
当你开始使用虚拟化技术来管理和运行多个操作系统时,VMware 是一个强大且广泛使用的选择。本篇博客将指导你如何安装 VMware Workstation Pro,这是一个功能强大的虚拟机软件,适用于个人和专业用户。 一、下载 VMware Workstation Pro 访问官网…...

AV1技术学习:Quantization
量化是对变换系数进行,并将量化索引熵编码。AV1的量化参数 QP 的取值范围是0 ~ 255。 一、Quantization Step Size 在给定的 QP 下,DC 系数的量化步长小于 AC 系数的量化步长。DC 系数和 AC 系数从 QP 到量化步长的映射如下图所示。当 QP 为 0 时&…...
vllm部署记录
1. pip安装 pip install vllm 下载模型在huggingface.co 注意在modelscope上的这个opt-125m好像不行了,我git不下来报错 启动服务 vllm serve opt-125m --model opt-125m --port 8888 第一个opt-125m是名字,可以在vllm支持的模型中查到,第二个是模型存放文件夹及其路径…...
HTML前端 盒模型及常见的布局 流式布局 弹性布局 网格布局
CSDN的文章没有“树状目录管理”,所以我在这里整理几篇相关的博客链接。 操作有些麻烦。 CSS 两种盒模型 box-sizing content-box 和 border-box 流式布局 flow layout 弹性布局 flex layout HTML CSS 网格布局 grid layout HTML CSS...

网络安全 DVWA通关指南 DVWA Command Injection(命令注入)
DVWA Command Injection(命令注入) 文章目录 DVWA Command Injection(命令注入)LowMediumHighImpossible Low 1、分析网页源代码 <?php// 当表单提交按钮(Submit)被触发时执行以下代码 if (isset($_P…...

VUE3学习第三篇:报错记录
1、在我整理好前端代码框架后,而且也启动好了对应的后台服务,访问页面,正常。 2、报错ReferenceError: defineModel is not defined 学到这里报错了 在vue网站的演练场,使用没问题 但是在我自己的代码里就出问题了 3、watchEffec…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...