Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤:
-
安装 NetworkX:
pip install networkx -
创建图:
NetworkX 支持多种类型的图,包括无向图、有向图、加权图等。import networkx as nx# 创建一个无向图 G = nx.Graph()# 添加节点 G.add_node(1) G.add_nodes_from([2, 3, 4])# 添加边 G.add_edge(1, 2) G.add_edges_from([(2, 3), (3, 4), (4, 1)]) -
读取和写入图:
可以从各种格式读取图数据或将图数据写入文件。# 从边列表文件读取图 G = nx.read_edgelist('path_to_edgelist.txt')# 将图写入边列表文件 nx.write_edgelist(G, 'path_to_output_edgelist.txt') -
绘制图:
使用 Matplotlib 库绘制图。import matplotlib.pyplot as plt# 绘制图 nx.draw(G, with_labels=True) plt.show() -
基本网络分析:
计算基本属性:
# 节点数量和边数量 num_nodes = G.number_of_nodes() num_edges = G.number_of_edges()# 度(每个节点的连接数) degrees = dict(G.degree())print(f'节点数量: {num_nodes}, 边数量: {num_edges}') print(f'节点度: {degrees}')计算路径和中心性:
# 最短路径 shortest_path = nx.shortest_path(G, source=1, target=3) print(f'节点1到节点3的最短路径: {shortest_path}')# 度中心性 degree_centrality = nx.degree_centrality(G) print(f'度中心性: {degree_centrality}')# 介数中心性 betweenness_centrality = nx.betweenness_centrality(G) print(f'介数中心性: {betweenness_centrality}')# 特征向量中心性 eigenvector_centrality = nx.eigenvector_centrality(G) print(f'特征向量中心性: {eigenvector_centrality}') -
高级网络分析:
社区发现:
使用 NetworkX 提供的算法或集成其他库(如community)进行社区发现。import community as community_louvain# 计算社区 partition = community_louvain.best_partition(G) print(f'社区划分: {partition}')图的连通性和子图:
# 判断图是否连通 is_connected = nx.is_connected(G) print(f'图是否连通: {is_connected}')# 找到图中的所有连通子图 subgraphs = [G.subgraph(c).copy() for c in nx.connected_components(G)] for i, sg in enumerate(subgraphs):print(f'连通子图{i}: 节点 - {sg.nodes()}, 边 - {sg.edges()}') -
应用案例:
社交网络分析:
# 构建社交网络图 social_network = nx.Graph() social_network.add_edges_from([('Alice', 'Bob'),('Alice', 'Charlie'),('Bob', 'Charlie'),('Bob', 'David'),('Charlie', 'David') ])# 绘制社交网络图 nx.draw(social_network, with_labels=True) plt.show()# 计算社交网络的基本属性 print(f'节点数量: {social_network.number_of_nodes()}') print(f'边数量: {social_network.number_of_edges()}') print(f'度中心性: {nx.degree_centrality(social_network)}')
这些步骤和示例代码展示了如何使用 NetworkX 进行复杂网络分析。根据你的具体需求,可以进一步扩展和定制这些分析方法。如果你有特定的网络分析问题或更复杂的应用场景,可以进一步探讨。
相关文章:
Python面试题:结合Python技术,如何使用NetworkX进行复杂网络分析
NetworkX 是一个强大的 Python 库,用于创建、操作和研究复杂网络的结构、动力学和功能。它提供了丰富的功能来处理图和网络数据,适合用于复杂网络分析。以下是使用 NetworkX 进行复杂网络分析的基本步骤: 安装 NetworkX: pip inst…...
【C#/C++】C#调C++的接口,给C++传结构体数组
C#调C的接口,给C传结构体数组 1、背景2、实现 1、背景 C#软件创建了一个结构体数组用来存储图像的区域信息,分别是矩形框的左上像素的xy坐标和矩形框右下像素的xy坐标。需要传入给调用的C函数的参数列表中,我们选择使用C#传入一个结构体数组…...
ctfshow SSTI注入 web369--web372
web369 这把request过滤了,只能自己拼字符了 ""[[__clas,s__]|join] 或者 ""[(__clas,s__)|join] 相当于 ""["__class__"]举个例子,chr(97) 返回的是字符 a,因为 97 是小写字母 a 的 Unicode 编码…...
Llama + Dify,在你的电脑搭建一套AI工作流
theme: smartblue 点赞 关注 收藏 学会了 本文简介 最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。 那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了&…...
洛谷 P9854 [CCC 2008 J1] Body Mass Index
这题让我们计算出 BMI 值,随后判断属于哪个等级。 BMI 值计算公式: 。 BMI 范围 对应信息 …...
Redis面试三道题目
针对Redis的面试题,我将从简单到困难给出三道题目,并附上参考答案的概要。 1. 简单题:请简述Redis是什么,以及它的主要优点。 参考答案: Redis简介:Redis是一个开源的、使用ANSI C语言编写、支持网络、可…...
redis的使用场景-分布式锁
使用redis的setnx命令放入数据并用此数据当锁完成业务(但是如果用户操作途中出现异常导致超出指定时间会出现问题) Service public class StockService {Autowiredprivate StockDao stockDao; //mapper注入Autowiredprivate StringRedisTemplate redisT…...
知识库系统全解析:2024年最佳9款
本文将分享9款优质团队知识库管理工具:PingCode、Worktile、石墨文档、语雀、Wolai 我来、有道云笔记、飞书文档、Confluence、Notion。 在追求高效团队运作的今天,掌握和整合知识成为了企业不可或缺的需求。但面对市场上琳琅满目的知识库管理工具&#…...
猫头虎分享:Numpy知识点一文带你详细学习np.random.randn()
🐯 猫头虎分享:Numpy知识点一文带你详细学习np.random.randn() 摘要 Numpy 是数据科学和机器学习领域中不可或缺的工具。在本篇文章中,我们将深入探讨 np.random.randn(),一个用于生成标准正态分布的强大函数。通过详细的代码示…...
QT 关于QTableWidget的常规使用
目录 一、初始化 二、封装功能用法 三、结语 一、初始化 1、设置表头 直接在ui设计界面修改或者使用QT封装的函数修改,代码如下: QStringList recList {"第一列", "第二列", "第三列"}; ui->tableWidget->setH…...
PyCharm 常用 的插件
Material Theme UI Lite:提供多种不同的页面风格,为PyCharm界面增添个性化元素。Chinese (Simplified) Language Pack:为中文用户提供简体中文的界面、菜单、提示信息,提升使用体验。Tabnine:基于人…...
理解 HTTP 请求中 Query 和 Body 的异同
本文将深入探讨HTTP请求中的两个关键要素:查询参数(Query)和请求体(Body)。我们将阐明它们之间的差异,并讨论在何种情况下使用每一种。 HTTP 请求概述 HTTP 请求是客户端(如浏览器)…...
【AI大模型】 企业级向量数据库的选择与实战
前言 ChatGPT4相比于ChatGPT3.5,有着诸多不可比拟的优势,比如图片生成、图片内容解析、GPTS开发、更智能的语言理解能力等,但是在国内使用GPT4存在网络及充值障碍等问题,如果您对ChatGPT4.0感兴趣,可以私信博主为您解决账号和环境…...
LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning)
要掌握LangChain开发框架并学会对大型预训练模型进行微调(fine-tuning),你需要理解整个过程从数据准备到最终部署的各个环节。下面是这一流程的一个概览,并提供了一些关键步骤和技术点: 1. LangChain开发框架简介 La…...
VMware安装(有的时候启动就蓝屏建议换VM版本)
当你开始使用虚拟化技术来管理和运行多个操作系统时,VMware 是一个强大且广泛使用的选择。本篇博客将指导你如何安装 VMware Workstation Pro,这是一个功能强大的虚拟机软件,适用于个人和专业用户。 一、下载 VMware Workstation Pro 访问官网…...
AV1技术学习:Quantization
量化是对变换系数进行,并将量化索引熵编码。AV1的量化参数 QP 的取值范围是0 ~ 255。 一、Quantization Step Size 在给定的 QP 下,DC 系数的量化步长小于 AC 系数的量化步长。DC 系数和 AC 系数从 QP 到量化步长的映射如下图所示。当 QP 为 0 时&…...
vllm部署记录
1. pip安装 pip install vllm 下载模型在huggingface.co 注意在modelscope上的这个opt-125m好像不行了,我git不下来报错 启动服务 vllm serve opt-125m --model opt-125m --port 8888 第一个opt-125m是名字,可以在vllm支持的模型中查到,第二个是模型存放文件夹及其路径…...
HTML前端 盒模型及常见的布局 流式布局 弹性布局 网格布局
CSDN的文章没有“树状目录管理”,所以我在这里整理几篇相关的博客链接。 操作有些麻烦。 CSS 两种盒模型 box-sizing content-box 和 border-box 流式布局 flow layout 弹性布局 flex layout HTML CSS 网格布局 grid layout HTML CSS...
网络安全 DVWA通关指南 DVWA Command Injection(命令注入)
DVWA Command Injection(命令注入) 文章目录 DVWA Command Injection(命令注入)LowMediumHighImpossible Low 1、分析网页源代码 <?php// 当表单提交按钮(Submit)被触发时执行以下代码 if (isset($_P…...
VUE3学习第三篇:报错记录
1、在我整理好前端代码框架后,而且也启动好了对应的后台服务,访问页面,正常。 2、报错ReferenceError: defineModel is not defined 学到这里报错了 在vue网站的演练场,使用没问题 但是在我自己的代码里就出问题了 3、watchEffec…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
