当前位置: 首页 > news >正文

Python - 开源库 ReportLab 库合并 CVS 和图像生成 PDF 文档

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/140281680

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


ReportLab:https://docs.reportlab.com/

ReportLab

ReportLab 是一个非常流行的 Python 库,专门用于生成 PDF 文档,提供了丰富的功能,可以创建复杂的文档,包括文本、图像、表格、图表等。即:

  • PDF 支持:ReportLab 专注于生成 PDF 文件,支持 PDF 的各种特性,如字体、颜色、图层等。
  • 可扩展性:可以通过编写 Python 代码来扩展 ReportLab 的功能,满足更复杂的需求。
  • 图形和图像:支持在 PDF 中嵌入图像,包括 JPEG、PNG 等格式。同时,ReportLab 也提供了绘制图形的功能。
  • 表格:ReportLab 提供了强大的表格支持,可以创建复杂的表格布局,并支持表格的格式化和样式设置。
  • 文本处理:支持多种字体和文本样式,包括粗体、斜体、下划线等。还可以调整文本的对齐方式和行间距。
  • 图表:可以生成各种图表,如条形图、饼图、折线图等,支持图表的自定义样式和数据源。
  • 自动化文档生成:可以自动化生成文档,如报告、发票、证书等,适合批量生成文档的场景。
  • 跨平台:ReportLab 可以在多种操作系统上运行,包括 Windows、Linux 和 macOS。
  • 开源:ReportLab 是一个开源项目,可以在遵守其许可证的情况下自由使用和修改。

示例函数 create_pdf 用于 构建 PDF 文件,输入 csv 文件列表和 image 文件列表:

  • csv_files 是 csv 文件路径列表;
  • image_files 是 image 文件路径列表;
  • headline 是 pdf 文件标题;
  • output_pdf 是 输出 的 PDF 路径;

源码如下:

import csv
import os.pathfrom reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Image, Spacer, Paragraphfrom root_dir import DATA_DIR
from utils.project_utils import traverse_dir_filesdef create_pdf(csv_files, image_files, headline, output_pdf):"""Merge the data from each CSV file into a single PDF file."""# 创建 PDF 文档doc = SimpleDocTemplate(output_pdf, pagesize=letter)elements = []line1 = headlinestyles = getSampleStyleSheet()style_normal = styles['Heading1']elements.append(Paragraph(line1, style_normal))# 读取并添加每个 CSV 文件的数据for csv_file in csv_files:data = []with open(csv_file, 'r', newline='') as file:reader = csv.reader(file)headers = next(reader)  # 读取标题行data += [headers]data += [row for row in reader]  # 读取数据行# 创建表格table = Table(data)table.setStyle(TableStyle([('BACKGROUND', (0, 0), (-1, 0), colors.white),('TEXTCOLOR', (0, 0), (-1, 0), colors.black),('ALIGN', (0, 0), (-1, -1), 'CENTER'),('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),('BOTTOMPADDING', (0, 0), (-1, 0), 12),('BACKGROUND', (0, 1), (-1, -1), colors.beige),]))# 将表格添加到文档元素中elements.append(table)elements.append(Spacer(1, 20))for image_file in image_files:img = Image(image_file)# img.hAlign = 'CENTER'# img.vAlign = 'TOP'ratio = img.imageWidth / 400img.drawHeight = img.imageHeight / ratioimg.drawWidth = img.imageWidth / ratio# img.scaleToFit(200, 200)  # 调整图像大小以适应页面elements.append(img)# 构建文档doc.build(elements)def main():input_csv_path = os.path.join(DATA_DIR, "abag-summary.csv")input_img_path = os.path.join(DATA_DIR, "plots")path_list = traverse_dir_files(input_img_path, ext="png")output_path = os.path.join(DATA_DIR, "output.pdf")create_pdf([input_csv_path], path_list, output_path)if __name__ == '__main__':main()

相关文章:

Python - 开源库 ReportLab 库合并 CVS 和图像生成 PDF 文档

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/140281680 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Report…...

Java编写SIP协议

1、编写Server代码 package com.genersoft.iot.vmp.sip; import javax.sip.*; import javax.sip.message.*; import javax.sip.header.*; import java.util.*;public class SimpleSipServer implements SipListener {private SipFactory sipFactory;private SipStack sipStack…...

大型语言模型LLM的核心概念

本文主要介绍了目前主流的,几个大型语言模型LLM的整个训练过程 通常分为下面的几个阶段 1. 预训练 采用互联网上的大量数据进行训练,这一阶段大模型LLM的主体已定,找出共性并且压缩成一个模型。模型的参数量不是越大越好,遵循合理…...

软件测试---网络基础、HTTP

一、网络基础 (1)Web和网络知识 网络基础TCP/IP 使用HTTP协议访问Web WWW万维网的诞生 WWW万维网的构成 (2)IP协议 (3)可靠传输的TCP和三次握手策略 (4)域名解析服务DNS &#xff0…...

韩顺平0基础学java——第39天

p820-841 jdbc和连接池 1.JDBC为访问不同的数据库提供了统一的接口,为使用者屏蔽了细节问题。 2.Java程序员使用JDBC,可以连接任何提供了JDBC驱动程序的数据库系统,从而完成对数据库的各种操作。 3.jdbc原理图 JDBC带来的好处 2.JDBC带来的…...

Linux文件恢复

很麻烦 一般还是小心最好 特别恢复的时候 可能不能选择某个文件夹去扫描恢复 所以 删除的时候 用rm -i代替rm 一定小心 以及 探索下linux的垃圾箱机制 注意 一定要恢复到不同文件夹 省的出问题 法1 系统自带工具 debugfs 但是好像不能重启? testdisk 1、安装 …...

大数据的数据质量有效提升的研究

大数据的数据质量有效提升是一个涉及多个环节和维度的复杂过程。以下是从数据采集、处理、管理到应用等方面,对大数据数据质量有效提升的研究概述: 一、数据采集阶段 明确采集需求:在数据采集前,需明确数据需求,包括…...

Flink-CDC解析(第47天)

前言 本文主要概述了Flink-CDC. 1. CDC 概述 1.1 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称 ,在广义的概念上,只要是能捕获数据变更的技术,都可以称之为 CDC。 核心思想是&#xff0c…...

二阶段测试

二阶段测试 1、部署框架前准备工作 服务器类型部署组件ip地址DR1调度服务器 主(ha01)KeepalivedLVS-DR192.168.168.21DR2调度服务器 备 (ha02)KeepalivedLVS-DR192.168.168.22web1节点服务器 (slave01)NginxTomcatMySQL 备MHA managerMHA node192.168.1…...

CSP-J模拟赛day1——解析+答案

题目传送门 yjq的吉祥数 题解 送分题&#xff0c;暴力枚举即可 Code #include<bits/stdc.h> using namespace std;int l,r; int num1,tmp0,q[10000],a[10000]; int k (int x){for (int j1;j<tmp;j){if (xq[j])return 0;}return 1; } int main(){while (num<100…...

【PostgreSQL案例】我要查的表没有在执行计划中

问题&#xff1a;查的表没有在执行计划中 sql&#xff1a; SELECT* FROM(SELECTA.column1 as "column1",--中间省略很多A字段A.column99 as "column99"fromtable_a Aleft join (SELECTlzl_idfromtable_a AAinner join table_b BB ON AA.lzl_key BB.lzl_…...

《程序猿入职必会(5) · CURD 页面细节规范 》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

操作系统面试知识点总结5

#来自ウルトラマンメビウス&#xff08;梦比优斯&#xff09; 1 IO管理概述 1.1 I/O 设备 I/O 设备的类型分类。 1.1.1 按使用特性 人机交互类外部设备&#xff0c;例如打印机、显示器等。存储设备&#xff0c;例如磁盘、光盘等。网络通信设备&#xff0c;例如网络接口等。 1…...

BigInteger和BigDecimal类

一、应用场景 1. BigInteger 类 目前&#xff0c;我们学过最大的是long类型&#xff0c;但是&#xff0c;在实际开发时候&#xff0c;很有可能遇见超出long类型范围的数&#xff0c;我们就需要用BigInteger类&#xff1b; ① add 加 ② subtract 减 ③ multiply 乘…...

2024最新Uniapp的H5网页版添加谷歌授权验证

现在教程不少&#xff0c;但是自从谷歌升级验证之后&#xff0c;以前的老教程就失效了&#xff0c;现在写一个新教程以备不时之需。 由于众所周知的特殊原因&#xff0c;开发的时候一定注意网络环境&#xff0c;如果没有梯子是无法进行开发的哦~ clientID的申请方式我就不再进…...

学习java第一百四十四天

Spring通知有哪些类型&#xff1f; 在AOP术语中&#xff0c;切面的工作被称为通知。通知实际上是程序运行时要通过Spring AOP框架来触发的代码段。 Spring切面可以应用5种类型的通知&#xff1a; 前置通知&#xff08;Before&#xff09;&#xff1a;在目标方法被调用之前调用通…...

Meta 发布 Llama3.1,一站教你如何推理、微调、部署大模型

最近这一两周看到不少互联网公司都已经开始秋招提前批了。不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c;帮助一些球友解…...

XSSFWorkbook 和 SXSSFWorkbook 的区别

在现代办公环境中&#xff0c;处理 Excel 文件是一个常见的任务。Apache POI 是一个流行的 Java 库&#xff0c;能够读写 Microsoft Office 文档。对于处理 Excel 文件&#xff0c;Apache POI 提供了 XSSFWorkbook 和 SXSSFWorkbook 两个类。本文将详细介绍这两个类的特点和适用…...

会议主题:NICE Seminar|神经组合优化方法的大规模泛化研究(南方科技大学王振坤副研究员)

数据增强 获得更多解 TSP问题 最优解与序列无关&#xff0c;数据增强 ICML 2024 Position Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems...

昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换

相关知识 CycleGAN 循环生成网络&#xff0c;实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法&#xff0c;应用于域迁移&#xff0c;也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix&#xff0c;但是Pix2Pix的数据必须是成对的。CycleGAN中只需…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

离线语音识别方案分析

随着人工智能技术的不断发展&#xff0c;语音识别技术也得到了广泛的应用&#xff0c;从智能家居到车载系统&#xff0c;语音识别正在改变我们与设备的交互方式。尤其是离线语音识别&#xff0c;由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力&#xff0c;广…...