当前位置: 首页 > news >正文

大型语言模型LLM的核心概念

本文主要介绍了目前主流的,几个大型语言模型LLM的整个训练过程

通常分为下面的几个阶段

1. 预训练

采用互联网上的大量数据进行训练,这一阶段大模型LLM的主体已定,找出共性并且压缩成一个模型。模型的参数量不是越大越好,遵循合理、适中的原则。增加数据量并保持中到大型的参数规模,则是一个成本与模型效果的平衡之后的合理方案

2. 微调

大型语言模型中,绝大部分的知识都是在预训练中学习的。
这阶段需要喂给精确的、高质量的问答数据给大模型,可以使用相对较少的数据,来继续训练模型,以适应特定问题和场景
对于每个问题,大模型都会给 3 个回答,需要人类手动选择一个最优的回答,给大模型一个反馈,来帮助大模型进一步优化和提升。

3. 模型对齐

使用预期回答模板,套入大模型生成的回答,实现模型和预测的对齐。这有助于符合正当的合法的目的,同时遵守人类最基本的情感、道德、底线、公序良俗以及符合当地的风俗习惯等等

相关文章:

大型语言模型LLM的核心概念

本文主要介绍了目前主流的,几个大型语言模型LLM的整个训练过程 通常分为下面的几个阶段 1. 预训练 采用互联网上的大量数据进行训练,这一阶段大模型LLM的主体已定,找出共性并且压缩成一个模型。模型的参数量不是越大越好,遵循合理…...

软件测试---网络基础、HTTP

一、网络基础 (1)Web和网络知识 网络基础TCP/IP 使用HTTP协议访问Web WWW万维网的诞生 WWW万维网的构成 (2)IP协议 (3)可靠传输的TCP和三次握手策略 (4)域名解析服务DNS &#xff0…...

韩顺平0基础学java——第39天

p820-841 jdbc和连接池 1.JDBC为访问不同的数据库提供了统一的接口,为使用者屏蔽了细节问题。 2.Java程序员使用JDBC,可以连接任何提供了JDBC驱动程序的数据库系统,从而完成对数据库的各种操作。 3.jdbc原理图 JDBC带来的好处 2.JDBC带来的…...

Linux文件恢复

很麻烦 一般还是小心最好 特别恢复的时候 可能不能选择某个文件夹去扫描恢复 所以 删除的时候 用rm -i代替rm 一定小心 以及 探索下linux的垃圾箱机制 注意 一定要恢复到不同文件夹 省的出问题 法1 系统自带工具 debugfs 但是好像不能重启? testdisk 1、安装 …...

大数据的数据质量有效提升的研究

大数据的数据质量有效提升是一个涉及多个环节和维度的复杂过程。以下是从数据采集、处理、管理到应用等方面,对大数据数据质量有效提升的研究概述: 一、数据采集阶段 明确采集需求:在数据采集前,需明确数据需求,包括…...

Flink-CDC解析(第47天)

前言 本文主要概述了Flink-CDC. 1. CDC 概述 1.1 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称 ,在广义的概念上,只要是能捕获数据变更的技术,都可以称之为 CDC。 核心思想是&#xff0c…...

二阶段测试

二阶段测试 1、部署框架前准备工作 服务器类型部署组件ip地址DR1调度服务器 主(ha01)KeepalivedLVS-DR192.168.168.21DR2调度服务器 备 (ha02)KeepalivedLVS-DR192.168.168.22web1节点服务器 (slave01)NginxTomcatMySQL 备MHA managerMHA node192.168.1…...

CSP-J模拟赛day1——解析+答案

题目传送门 yjq的吉祥数 题解 送分题&#xff0c;暴力枚举即可 Code #include<bits/stdc.h> using namespace std;int l,r; int num1,tmp0,q[10000],a[10000]; int k (int x){for (int j1;j<tmp;j){if (xq[j])return 0;}return 1; } int main(){while (num<100…...

【PostgreSQL案例】我要查的表没有在执行计划中

问题&#xff1a;查的表没有在执行计划中 sql&#xff1a; SELECT* FROM(SELECTA.column1 as "column1",--中间省略很多A字段A.column99 as "column99"fromtable_a Aleft join (SELECTlzl_idfromtable_a AAinner join table_b BB ON AA.lzl_key BB.lzl_…...

《程序猿入职必会(5) · CURD 页面细节规范 》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

操作系统面试知识点总结5

#来自ウルトラマンメビウス&#xff08;梦比优斯&#xff09; 1 IO管理概述 1.1 I/O 设备 I/O 设备的类型分类。 1.1.1 按使用特性 人机交互类外部设备&#xff0c;例如打印机、显示器等。存储设备&#xff0c;例如磁盘、光盘等。网络通信设备&#xff0c;例如网络接口等。 1…...

BigInteger和BigDecimal类

一、应用场景 1. BigInteger 类 目前&#xff0c;我们学过最大的是long类型&#xff0c;但是&#xff0c;在实际开发时候&#xff0c;很有可能遇见超出long类型范围的数&#xff0c;我们就需要用BigInteger类&#xff1b; ① add 加 ② subtract 减 ③ multiply 乘…...

2024最新Uniapp的H5网页版添加谷歌授权验证

现在教程不少&#xff0c;但是自从谷歌升级验证之后&#xff0c;以前的老教程就失效了&#xff0c;现在写一个新教程以备不时之需。 由于众所周知的特殊原因&#xff0c;开发的时候一定注意网络环境&#xff0c;如果没有梯子是无法进行开发的哦~ clientID的申请方式我就不再进…...

学习java第一百四十四天

Spring通知有哪些类型&#xff1f; 在AOP术语中&#xff0c;切面的工作被称为通知。通知实际上是程序运行时要通过Spring AOP框架来触发的代码段。 Spring切面可以应用5种类型的通知&#xff1a; 前置通知&#xff08;Before&#xff09;&#xff1a;在目标方法被调用之前调用通…...

Meta 发布 Llama3.1,一站教你如何推理、微调、部署大模型

最近这一两周看到不少互联网公司都已经开始秋招提前批了。不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c;帮助一些球友解…...

XSSFWorkbook 和 SXSSFWorkbook 的区别

在现代办公环境中&#xff0c;处理 Excel 文件是一个常见的任务。Apache POI 是一个流行的 Java 库&#xff0c;能够读写 Microsoft Office 文档。对于处理 Excel 文件&#xff0c;Apache POI 提供了 XSSFWorkbook 和 SXSSFWorkbook 两个类。本文将详细介绍这两个类的特点和适用…...

会议主题:NICE Seminar|神经组合优化方法的大规模泛化研究(南方科技大学王振坤副研究员)

数据增强 获得更多解 TSP问题 最优解与序列无关&#xff0c;数据增强 ICML 2024 Position Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems...

昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换

相关知识 CycleGAN 循环生成网络&#xff0c;实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法&#xff0c;应用于域迁移&#xff0c;也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix&#xff0c;但是Pix2Pix的数据必须是成对的。CycleGAN中只需…...

《Java初阶数据结构》----6.<优先级队列之PriorityQueue底层:堆>

前言 大家好&#xff0c;我目前在学习java。之前也学了一段时间&#xff0c;但是没有发布博客。时间过的真的很快。我会利用好这个暑假&#xff0c;来复习之前学过的内容&#xff0c;并整理好之前写过的博客进行发布。如果博客中有错误或者没有读懂的地方。热烈欢迎大家在评论区…...

Matrix Equation(高斯线性异或消元+bitset优化)

题目&#xff1a; 登录—专业IT笔试面试备考平台_牛客网 思路&#xff1a; 我们发现对于矩阵C可以一列一列求。 mod2&#xff0c;当这一行相乘1的个数为奇数时&#xff0c;z(i,j)为1&#xff0c;偶数为0&#xff0c;是异或消元。 对于b[i&#xff0c;j]*c[i,j],b[i,j]可以…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...

命令行关闭Windows防火墙

命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)​方法二:CMD命令…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)

起因 为了实现在报销流程中&#xff0c;发票不能重用的限制&#xff0c;发票上传后&#xff0c;希望能读出发票号&#xff0c;并记录发票号已用&#xff0c;下次不再可用于报销。 基于上面的需求&#xff0c;研究了OCR 的方式和读PDF的方式&#xff0c;实际是可行的&#xff…...