5个代码技巧,加速你的Python
5个代码技巧,加速你的Python
人生苦短,快学Python!
Python作为一种功能强大的编程语言,因其简单易学而受到很多初学者的青睐。它的应用领域又非常广泛:科学计算、游戏开发、爬虫、人工智能、自动化办公、Web应用开发等等。

而在数据科学领域中,Python 是使用最广泛的编程语言,并且其受欢迎程度持续增长。如果也经常需要用Python处理海量数据,就一定会遇到代码运行几十分钟甚至更久的情况。今天我们会给大家分享7个代码技巧,加速你的Python运行速度,提高Python技能!
技巧 1:加速 NumPy
NumPy是一个可高效处理数组的 Python 库,它还提供快速和优化的矢量化操作。但!它不支持并行处理。作为 NumPy 的替代品,我们可以使用NumExpr。NumExpr 的性能明显优于 NumPy,因为它支持多线程。此外,它避免了为中间结果分配内存。
pip install numexpr
在交互式环境中输入如下命令:
import numpy as np
import numexpr as ne
import timeitvar1 = np.random.random(2**27)
var2 = np.random.random(2**27)%timeit np.sin(var1) / np.cos(var2)
%timeit ne.evaluate("sin(var1) / cos(var2)")
输出:

根据执行结果,使用 NumExpr 大约快 4 倍。当你有大型数组需要处理时,NumExpr 效果最佳。
技巧 2:优先使用内置函数
Python 内置函数比自定义实现快得多,因此我们要优先使用它们。
举个例子:

在上面的代码中,我们将一个包含四个条目的列表复制了 1000 万次,因此我们得到了一个包含 4000 万个条目的列表,然后我们将列表中的字符串转换为小写。
可以看到结果,使用内置函数的速度提高了大约 23倍。
关于内置函数的使用,可以参考我们之前分享的文章:
Python中堪称神仙的6个内置函数
Python中最常用的10个内置函数
技巧 3:使用列表生成式
经常使用列表和for循环来存储计算结果,其实使用列表生成式能更快。
在交互式环境中输入如下命令:
import numpy as np
from time import perf_counterresult_list_loop = []
result_list_com = []number_round = 10000000start = perf_counter()
for i in range(number_round):result_list_loop.append(i*i)
print(perf_counter()-start)start = perf_counter()
result_list_com = [i*i for i in range(number_round)]
print(perf_counter()-start)print(result_list_com[10])
输出:

如上图所示,使用列表生成式能快3倍。
列表生成式是一种基于其他iterable(如集合、元组、其他列表等)创建列表的方法,大家感兴趣可以自行了解一下。

技巧 4:不要导入不必要的模块
估计大家可能已经多次听到这个技巧,但它可以显着提高代码的性能。有时候没有必要导入整个库,毕竟我们通常只需要它的某些功能。
这里我们使用math模块作为例子:
import math
from time import perf_counterstart = perf_counter()
variable = math.exp(7)
print(perf_counter()-start)
接着我们不导入整个math模块,只使用需要的 exp() 函数。
from math import exp
from time import perf_counterstart = perf_counter()
variable = exp(7)
print(perf_counter()-start)
两次运行时间比较:

技巧 5:使用numba
Numba 是一款为 python 打造的、专门针对 Numpy 数组循环计算场景的即时编译器。
在交互式环境中输入如下命令:
df = pd.DataFrame({'x':np.random.rand(10000)})def calculate(x):return np.sum(x)/x.size
输出分别Numba和低级语言CPython进行加速:

结果可以看到,我们的自定义函数在使用engine='numba' 或 engine='cython' 后,速度明显加快!

人生苦短,快学Python!
今天我们给大家分享了7个代码技巧,加速你的Python运行速度,提高Python技能!

自定义函数 使用 engine=‘numba’ 或 engine=‘cython’ 后,速度明显加快
使用自带函数,速度明显比使用自定义函数更快,此时加上 engine=‘numba’ 或 engine=‘cython’ 没有加速效果。
相关文章:
5个代码技巧,加速你的Python
5个代码技巧,加速你的Python 人生苦短,快学Python! Python作为一种功能强大的编程语言,因其简单易学而受到很多初学者的青睐。它的应用领域又非常广泛:科学计算、游戏开发、爬虫、人工智能、自动化办公、Web应用开发…...
字节跳动软件测试岗,前两面过了,第三面HR天坑!竟然跟我说……
阎王易见,小鬼难缠。我一直相信这个世界上好人居多,但是也没想到自己也会在阴沟里翻船。我感觉自己被字节跳动的HR坑了。在这里,我只想告诫大家,offer一定要拿到自己的手里才是真的,口头offer都是不牢靠的,…...
[数据分析与可视化] Python绘制数据地图1-GeoPandas入门指北
本文主要介绍GeoPandas的基本使用方法,以绘制简单的地图。GeoPandas是一个Python开源项目,旨在提供丰富而简单的地理空间数据处理接口。GeoPandas扩展了Pandas的数据类型,并使用matplotlib进行绘图。GeoPandas官方仓库地址为:GeoP…...
ChatGPT加强版GPT-4面世,打工人的方式将被颠覆
🔗 运行环境:chatGPT,GPT-4 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 #### 防伪水印——左手の明天 #### 💗 大家好&#…...
Python逆向及相关知识
今天第二次看见python字节码的逆向题,然后发现了一个介绍Python逆向的文章,所以把文章里的内容简单整理记录一下。 文章参考:https://www.cnblogs.com/blili/p/11799398.html Python运行原理: 一.什么是Python Python 是一种解…...
Python基础语法、注意点加实例全解
本篇文章我们讲解Python最基础语法,包含:数据类型、注释、变量、类型转换、命名规范、运算符、字符串拼接、字符串格式化、if条件判断、while循环、for循环、函数、读取文件、写入文件、异常捕获、包导入等。通过讲解语法注意事项实例代码详解࿰…...
ETH RPC搭建
配置选择先是看了aws、谷歌云、阿里云这个配置都要1-2wrmb一个月,太贵了问了很多朋友,打算用hetzner,50欧一个月足以我选的配置:64gb,2tb ssd开好后在邮箱收到信息链接后按以下步骤安装系统:https://0o0.me…...
南京邮电大学数据库第一次课后作业
1.单选题 (5分) (B)是存储在计算机内有结构的数据的集合。 (A)数据库系统 (B)数据库 (C)数据库管理系统 (D)数据结构 2.单选题 (5分) 数据库的特点之一是数据的共享,严格的讲,这里的…...
近期投简历、找日常实习的一些碎碎念(大二---测试岗)
嘿嘿嘿,我又回来了,相信不少兄弟已经发现我似乎已经断更了好久,哈哈,我是尝试去找实习,投简历面试去了。 先说一下背景。 目录 背景 求职进行中 简历 投递和沟通 收获和感受 背景 博主,大二软件工程…...
ThreadLocal的使用
1. ThreadLocal介绍 ThreadLocal顾名思义,就是线程的本地变量,只有当前线程可见,对其他线程来说是封闭且隔离的。每一个线程为自己本身创建ThreadLocal变量,只有当前线程可以访问,其他的线程不可以,从根源…...
Java ~ Reference【总结】
一 概述 简介 在JDK1.2之前,Java中引用的定义是十分传统的:如果引用类型的变量中存储的数值代表的是另一块内存的起始地址,就称这块内存代表着一个引用。在这种定义之下,一个对象只有被引用和没有被引用两种状态。 实际上…...
最快方法求最长上升子序列(LIS)+最长公共子序列(LCS)模板(C/C++)
目录 1 LIS算法(最长上升子序列) 1.1 简介 1.2 代码 1.3 相关解释 2 LCS算法(最长公共子序列) 2.1 简介 2.2 代码(动态规划,时间复杂度O(nlogn)) 2.3 特殊…...
012+limou+C语言深入知识——(4)“结构体”与“枚举体”与“联合体”
一、结构体 1、结构体基础 (1)结构体完全声明 struct tag {member-list; }variable-list;//描述一个人 struct people {char name[10];//人名int age;//年龄int idnumber;//身份证 };(2)结构体不完全声明(匿名结构体…...
Canvas百战成神-圆(1)
Canvas百战成神-圆 初始化容器 <canvas id"canvas"></canvas>canvas{border: 1px solid black; }让页面占满屏幕 *{margin: 0;padding: 0; } html,body{width: 100%;height: 100%;overflow: hidden; } ::-webkit-scrollbar{display: none; }初始化画笔…...
详解分库分表设计
详解分库分表设计 背景 在传统的单机数据库架构中,所有数据都存储在同一个数据库中,随着业务规模的不断扩大,数据量和并发量也会越来越大,这会给数据库的性能和可用性带来挑战。此外,当单机数据库的容量达到瓶颈时…...
动态规划-基础(斐波那契数、爬楼梯、使用最小花费爬楼梯、不同路径、不同路径II、整数拆分、不同的二叉搜索树)
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。所以动态规划中每一个状态一定是由上一个状态推导出来的。动态规划问题,五步走:状态定义&am…...
深入理解WebSocket协议
“ 一直以来对WebSocket仅停留在使用阶段,也没有深入理解其背后的原理。当看到 x x x was not upgraded to websocket,我是彻底蒙了,等我镇定下来,打开百度输入这行报错信息,随即看到的就是大家说的跨域,或…...
Vector的扩容机制
到需要扩容的时候,Vector会根据需要的大小,创建一个新数组,然后把旧数组的元素复制进新数组。 我们可以看到,扩容后,其实是一个新数组,内部元素的地址已经改变了。所以扩容之后,原先的迭代器会…...
22讲MySQL有哪些“饮鸩止渴”提高性能的方法
短连接风暴 是指数据库有很多链接之后只执行了几个语句就断开的客户端,然后我们知道数据库客户端和数据库每次连接不仅需要tcp的三次握手,而且还有mysql的鉴权操作都要占用很多服务器的资源。话虽如此但是如果连接的不多的话其实这点资源无所谓的。 但是…...
10.0自定义SystemUI下拉状态栏和通知栏视图(六)之监听系统通知
1.前言 在进行rom产品定制化开发中,在10.0中针对systemui下拉状态栏和通知栏的定制UI的工作开发中,原生系统的下拉状态栏和通知栏的视图UI在产品开发中会不太满足功能, 所以根据产品需要来自定义SystemUI的下拉状态栏和通知栏功能,首选实现的就是下拉通知栏左滑删除通知的部…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
