当前位置: 首页 > news >正文

Jmeter三种方式获取数组中多个数据并将其当做下个接口参数入参【附带JSON提取器和CSV格式化】

目录

一、传统方式-JOSN提取器获取接口返回值

1、接口调用获取返回值

2、添加JSON提取器

3、调试程序查看结果

4、添加循环控制器

5、设置count计数器

6、添加请求

7、执行请求

二、CSV参数化

1、将结果写入后置处理程序

2、设置循环处理器

3、添加CSV文件

4、设置计数器

5、接口调用

三、数据库查询

1、添加mysql jar包

2、、添加JDBC配置元件

3、调试数据库语句

4、ForEach处理器


一、传统方式-JOSN提取器获取接口返回值

1、接口调用获取返回值

2、添加JSON提取器

添加后置处理器-JSON提取器

3、调试程序查看结果

添加后置处理器-调试后置处理程序,验证结果是否正确

4、添加循环控制器

添加-逻辑控制器-循环控制器,并设定循环次数

5、设置count计数器

添加配置元件-计数器,设置计数器最大次数

6、添加请求

引用参数的表达式:${__V(cityId_${__counter(,)},)}

① __V为jmeter自带的一个嵌套变量函数
运行第1次cityId_${__counter(,)}为id_1
运行第2次cityId_${__counter(,)}为id_2
······
运行第367次cityId_${__counter(,)}为id_367

② __counter为jmeter自带的一个计数函数
${__counter(,)} 引用这个函数,每运行1次+1,从1开始

③ cityId_${__counter(,)}
运行第1次cityId_1,运行第2次cityId_2,以此类推,直到运行到循环次数cityId_367

7、执行请求

二、CSV参数化

1、将结果写入后置处理程序

添加后置处理器-BeanShell后置处理程序

代码如下:

FileWriter fstream = new FileWriter("D:\\orderrtn.csv",true);
BufferedWriter out=new BufferedWriter(fstream);
num=vars.get("orderRtnNo_matchNr");
//log.info(num);
for(int i=1;i<=(Integer.parseInt(num));i++){
//	log.info("i="+i);
//	log.info(vars.get("id_"+i));  查看是否获取到变量
//	log.info(vars.get("name_"+i));
out.write(vars.get("orderRtnNo_"+i)+"\n");
}
out.close();
fstream.close();

2、设置循环处理器

添加-逻辑控制器-循环控制器,并设定循环次数,因为CSV文件中的orderRtnNo显示为orderRtnNo_1,orderRtnNo_11显示,所以此处循环次数要是orderRtnNo_#

3、添加CSV文件

4、设置计数器

添加在循环控制器下,count初始值为1,每次循环+1。
调用JSON提取器提取的orderRtnNo进行数据查询
第一次循环,需要使用orderRtnNo_1进行查询,orderRtnNo_1 = orderRtnNo_${count},第二次循环需要orderRtnNo_2,以此类推。

5、接口调用

  • 添加函数

调用 goodsName_${count} 不可以直接${goodsName_${count}},需要使用嵌套变量函数__V:

函数助手生成的函数字符串为:${__V(orderRtnNo_${count},)},
注意要把第一个参数后的逗号删掉: ${__V(orderRtnNo_${count})},代表只需要第一个参数,忽略默认值参数。

三、数据库查询

1、添加mysql jar包

具体的可以去百度下载

2、、添加JDBC配置元件

添加配置元件-JDBC Connection Configuration

Database Connection Configuration是主要的配置信息。

Database URL:数据库链接地址;注意端口号后是数据库名称

jdbc:mysql://localhost:3306/database_name?useUnicode=true&characterEncoding=utf-8

JDBC Driver class:数据库驱动程序,根据不同数据库,选择不同的驱动程序;

mysql:

Username:数据库用户名;

Password:数据库密码。

3、添加JDBC请求

添加-请求-JDBC请求

3、调试数据库语句

4、ForEach处理器

5、接口调用

相关文章:

Jmeter三种方式获取数组中多个数据并将其当做下个接口参数入参【附带JSON提取器和CSV格式化】

目录 一、传统方式-JOSN提取器获取接口返回值 1、接口调用获取返回值 2、添加JSON提取器 3、调试程序查看结果 4、添加循环控制器 5、设置count计数器 6、添加请求 7、执行请求 二、CSV参数化 1、将结果写入后置处理程序 2、设置循环处理器 3、添加CSV文件 4、设置…...

C++入门基础:C++中的循环语句

循环语句是编程语言中用来重复执行一段代码直到满足特定条件的一种控制结构。它们对于处理需要重复任务的场景非常有用&#xff0c;比如遍历数组、累加数值、重复执行某项操作直到满足条件等。 但是在使用循环语句的时候需要注意下哈&#xff0c;有时候一不小心会构成死循环或者…...

VUE 基础(二)

1 v-show:根据表达值的真假&#xff0c;切换元素的显示和隐藏 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0">&l…...

VMware Cloud Foundation ESXi 主机

一、准备嵌套 ESXi 主机环境# 1)物理 ESXi 主机信息 本次准备用于部署 VCF 嵌套实验环境的物理宿主机的配置信息如下图所示。其实,部署 VCF 环境主要对内存的大小要求比较高,部署完整的管理域相关组件下来差不多就要占用 200 GB左右内存,而对 CPU 和存储的需求可以根据实…...

PyTorch深度学习快速入门(下)

PyTorch深度学习快速入门&#xff08;下&#xff09; 一、现有网络模型的使用及修改&#xff08;一&#xff09;背景知识&#xff08;二&#xff09;修改网络模型的三种方法 二、网络模型的保存与加载&#xff08;一&#xff09;保存网络模型的两种方法&#xff08;二&#xff…...

轻松入门Linux—CentOS,直接拿捏 —/— <1>

一、什么是Linux Linux是一个开源的操作系统&#xff0c;目前是市面上占有率极高的服务器操作系统&#xff0c;目前其分支有很多。是一个基于 POSIX 和 UNIX 的多用户、多任务、支持多线程和多 CPU 的操作系统 Linux能运行主要的UNIX工具软件、应用程序和网络协议 Linux支持 32…...

pandas安装以及导入CSV

安装pandas pip install pandas速度慢可以切换国内镜像源 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas执行导入csv操作 import pandas as pd# 读取csv文件 data pd.read_csv(yourPath)输入data查看数据 导入成功&#xff01;...

新能源车浪潮来袭,同时存在高压低压系统,如何准确进行高低压布线间距EMC分析?

摘要 随着车辆电气化水平的逐步提升&#xff0c;电气零部件布局和布线面临着前所未有的挑战&#xff0c;在不断的压缩电气零部件间间距后&#xff0c;EMC性能成为非常关键的性能指标。特别是对于新能源车型&#xff0c;同时存在高压和低压系统&#xff0c;高低压耦合若处理的不…...

QUIC 协议

详解 QUIC 协议&#xff1a;它为何比 TCP 更优越&#xff1f;...

【软件测试】--接口测试

1. 接口用例设计 接口测试的测试点 功能测试 单接口功能&#xff1a; 手工测试中的单个业务模块&#xff0c;一般对应一个接口 登陆业务 --> 登陆接口加入购物车业务 --> 加入购物车接口订单业务 --> 订单接口支付业务 --> 支付接口 借助工具、代码。绕开前端界面…...

【前端】上传视频,截取第一帧图片

使用input上传视频&#xff0c;获得视频的第一帧 参考&#xff1a;JavaScript获取视频的尺寸信息和第一帧图片 - 掘金 (juejin.cn) html&#xff1a; <inputbind:this{uploadRef}on:change{handleUpload}accept"video/*"type"file"/>视频类型校验&a…...

Redis-GEO数据结构的基本用法

GEO就是Geolocation的简写形式&#xff0c;代表地理坐标。Redis在3.2版本中加入了对GEO的支持&#xff0c;允许存储地理坐标信息&#xff0c;帮助我们根据经纬度来检索数据。常见的命令有&#xff1a; GEOADD&#xff1a;添加一个地理空间信息&#xff0c;包含&#xff1a;经度…...

【Linux C | 网络编程】进程池大文件传输的实现详解(三)

上一篇实现了进程池的小文件传输&#xff0c;使用自定义的协议&#xff0c;数据长度数据本身&#xff0c;类似小火车的形式&#xff0c;可以很好的解决TCP“粘包”的问题。 【Linux C | 网络编程】进程池小文件传输的实现详解&#xff08;二&#xff09; 当文件的内容大小少于…...

Mac如何通过SSH连接Github

目录 前言 一、实现步骤 1.生成 SSH 密钥对 2.添加 SSH 密钥到 GitHub&#xff1a; 3.配置 SSH 连接 1.更新远程仓库 URL 2.测试 SSH 连接 前言 GitHub 在 2021 年 8 月 13 日停止了对使用密码进行身份验证的支持。因此&#xff0c;你需要使用其他认证方式&#xff0c;如…...

成就巴西休闲游戏如何借助Google谷歌广告投放优势

在探讨巴西休闲游戏如何借助谷歌广告投放优势实现市场扩张的过程中&#xff0c;我们不得不深入分析巴西市场的独特属性、休闲游戏的兴起背景&#xff0c;以及谷歌广告平台在全球范围内的强大影响力。近年来&#xff0c;随着移动游戏市场的快速发展&#xff0c;特别是中轻度休闲…...

利用python检查磁盘空间使用情况

目录 一.前言 二.使用的库介绍 三.代码实现以及解析 3.1导入模块 3.2邮件发送函数 send_email 3.3检查磁盘空间函数 check_and_clean_disk 3.4主程序逻辑 四.致谢 一.前言 在信息技术飞速发展的今天&#xff0c;数据量的激增使得磁盘空间管理成为系统运维中的一项基…...

卷积神经网络(五)---图像增强的方法

前面的部分专注于卷积神经网络的层结构介绍&#xff0c;同时还介绍了到目前为止比较出名的卷积神经网络&#xff0c;接着使用比较复杂的卷积神经网络提高了 MNIST 数据集的准确率。下面将从另外的角度——图像增强的方面入手&#xff0c;提高模型的准确率和泛化能力。 一直以来…...

矩阵常见分解算法及其在SLAM中的应用

文章目录 常见特殊矩阵定义Cholesky分解&#xff08;正定Hermittian矩阵&#xff0c;分解结果唯一&#xff09;Cholesky分解应用 SVD分解&#xff08;将singularvalues排序后分解唯一&#xff09;SVD 分解的应用&#xff08;任意矩阵&#xff09; QR分解&#xff08;任意矩阵&a…...

【排序】快速排序详解

✨✨欢迎大家来到Celia的博客✨✨ &#x1f389;&#x1f389;创作不易&#xff0c;请点赞关注&#xff0c;多多支持哦&#x1f389;&#x1f389; 所属专栏&#xff1a;排序 个人主页&#xff1a;Celias blog~ 一、快速排序的思想 快速排序的核心思想是&#xff1a; 选定一个…...

贪心算法总结(2)

一、买卖股票的最佳时机 . - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int maxProfit(vector<int>& prices) {int miniINT_MAX;int ret0;for(int&price:prices){//遍历的时候&#xff0c;我们随时去更新最小的值&#xff0c;然后让每一位…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

02.运算符

目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&&#xff1a;逻辑与 ||&#xff1a;逻辑或 &#xff01;&#xff1a;逻辑非 短路求值 位运算符 按位与&&#xff1a; 按位或 | 按位取反~ …...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...

深度学习学习率优化方法——pytorch中各类warm up策略

warm-up具体原理以及为什么这么做在之前的博客有介绍&#xff0c;这里直接介绍如何直接使用pytorch中的warm-up策略&#xff0c;在pytorch中对于warm-up所有支持的方法都有描述&#xff0c;可以直接阅读1。 深度学习中各类学习率优化方法(AdaGrad/RMSprop/Adam/Warm-UP)原理及其…...

MQTT协议:物联网时代的通信基石

MQTT协议&#xff1a;物联网时代的通信基石 在当今快速发展的物联网&#xff08;IoT&#xff09;时代&#xff0c;设备之间的通信变得尤为重要。MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;协议作为一种轻量级的消息传输协议&#xff0c;正逐渐成为物联…...

分享今天做的力扣SQL题

其实做之前就打算分享的&#xff0c;但是做完又不想分享了。。。结果没几分钟&#xff0c;还是&#xff0c;写一下吧。我就当各位是监督我的。 说一下&#xff0c;这是第一天做SQL题&#xff0c;虽然我也是软件工程专业&#xff0c;但是学的本来就不好&#xff0c;又忘了个差不…...