当前位置: 首页 > news >正文

Elasticsearch:如何在 Elastic 中实现图片相似度搜索

作者:Radovan Ondas

在本文章,我们将了解如何通过几个步骤在 Elastic 中实施相似图像搜索。 开始设置应用程序环境,然后导入 NLP 模型,最后完成为你的图像集生成嵌入。

Elastic 图像相似性搜索概览 >>

如何设置环境

第一步是为你的应用程序设置环境。 一般要求包括:

  • Git
  • Python 3.9
  • Docker
  • 数百张图片

使用数百张图像以确保获得最佳效果非常重要。

转到工作文件夹并检查创建的存储库代码。 然后导航到存储库文件夹。

git clone https://github.com/radoondas/flask-elastic-image-search.git
cd flask-elastic-image-search
$ git clone https://github.com/radoondas/flask-elastic-image-search.git
Cloning into 'flask-elastic-image-search'...
remote: Enumerating objects: 105, done.
remote: Counting objects: 100% (105/105), done.
remote: Compressing objects: 100% (72/72), done.
remote: Total 105 (delta 37), reused 94 (delta 27), pack-reused 0
Receiving objects: 100% (105/105), 20.72 MiB | 9.75 MiB/s, done.
Resolving deltas: 100% (37/37), done.
$ cd flask-elastic-image-search/
$ pwd
/Users/liuxg/python/flask-elastic-image-search

因为你将使用 Python 来运行代码,所以你需要确保满足所有要求并且环境已准备就绪。 现在创建虚拟环境并安装所有依赖项。

python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

安装

如果你还没有安装好自己的 Elasticsearch 及 Kibana,请参考如下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

特别注意的是:我们将以最新的 Elastic Stack 8.6.1 来进行展示。请参考 Elastic Stack 8.x 的文章进行安装。

启动白金版试用功能

由于上传模型是一个白金版的功能,我们需要启动试用功能。更多关于订阅的信息,请参考网址:订阅 | Elastic Stack 产品和支持 | Elastic。

这样我们就成功地启动了白金版试用功能。 

Elasticsearch 集群和嵌入模型

登录到你的帐户以启动 Elasticsearch 集群。 设置一个小型集群:

  • 一个具有 2GB 内存的 HOT 节点
  • 一个具有 4GB 内存的 ML(机器学习)节点(此节点的大小很重要,因为你将导入 Elasticsearch 的 NLP 模型会消耗约 1.5GB 的内存。)

部署准备就绪后,转到 Kibana 并检查机器学习节点的容量。 你将在视图中看到一个机器学习节点。 目前没有加载模型。

使用 Eland 库从 OpenAI 上传 CLIP 嵌入模型。 Eland 是一个 Python Elasticsearch 客户端,用于在 Elasticsearch 中探索和分析数据,能够处理文本和图像。 您将使用此模型从文本输入生成嵌入并查询匹配图像。 在 Eland 库的文档中找到更多详细信息。

对于下一步,你将需要 Elasticsearch 端点。 你可以从部署详细信息部分的 Elasticsearch 云控制台获取它。

 

在本示例中,我们将使用本地部署来进行展示,所以,我们并不必要完成上面的步骤。

Eland

Eland 可以通过 pip 从 PyPI 安装。在安装之前,我们需要安装好自己的 Python。

$ python --version
Python 3.10.2

可以使用 Pip 从 PyPI 安装 Eland:

python -m pip install eland

也可以使用 Conda 从 Conda Forge 安装 Eland:

conda install -c conda-forge eland

希望在不安装 Eland 的情况下使用它的用户,为了只运行可用的脚本,可以构建 Docker 容器:

git clone https://github.com/elastic/eland
cd eland
docker build -t elastic/eland .

Eland 将 Hugging Face 转换器模型到其 TorchScript 表示的转换和分块过程封装在一个 Python 方法中; 因此,这是推荐的导入方法。

  1. 安装 Eland Python 客户端。
  2. 运行 eland_import_hub_model 脚本。 例如:
eland_import_hub_model --url <clusterUrl> \ 
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ 
--task-type ner 
  • 指定 URL 以访问你的集群。 例如,https://<user>:<password>@<hostname>:<port>。
  • 在 Hugging Face 模型中心中指定模型的标识符。
  • 指定 NLP 任务的类型。 支持的值为 fill_mask、ner、text_classification、text_embedding, question_answering 和 zero_shot_classification。

上传模型

我们使用如下的命令来进行上传模型:

eland_import_hub_model --url https://<user>:<password>@<hostname>:<port> \--hub-model-id sentence-transformers/clip-ViT-B-32-multilingual-v1 \--task-type text_embedding \--ca-certs <your certificate> \--start

针对我的情况:

eland_import_hub_model --url https://elastic:ZgzSt2vHNwA6yPn-fllr@localhost:9200 \--hub-model-id sentence-transformers/clip-ViT-B-32-multilingual-v1 \--task-type text_embedding \--ca-certs /Users/liuxg/elastic/elasticsearch-8.6.1/config/certs/http_ca.crt \--start

请注意: 你需要根据自己的 Elasticsearch 访问端点,用户名及密码来修改上面的设置,同时你需要根据自己的配置修改上面的证书路径。

运行上面的命令:

上面显示,我们已经成功地上传了模型。我们可以到 Kibana 中进行查看:

 

 

 

上面显示我们已经上传了所需要的 CLIP 模型,并且它的状态是 started。

如何创建图像嵌入

在设置 Elasticsearch 集群并导入嵌入模型后,你需要矢量化图像数据并为数据集中的每个图像创建图像嵌入。 

 

要创建图像嵌入,请使用简单的 Python 脚本。 你可以在此处找到该脚本:create-image-embeddings.py。 该脚本将遍历你的图像目录并生成单独的图像嵌入。 它将使用名称和相对路径创建文档,并使用提供的映射将其保存到 Elasticsearch 索引 my-image-embeddings 中。

将所有图像(照片)放入文件夹 app/static/images。 使用带有子文件夹的目录结构来组织图像。 所有图像准备就绪后,使用几个参数执行脚本。

至少要有几百张图像才能获得合理的结果,这一点至关重要。 图像太少不会产生预期的结果,因为你要搜索的空间非常小,而且到搜索向量的距离也非常相似。我尝试在网上下载很多的照片,但是感觉一张一张地下载非常麻烦。你可以在谷歌浏览器中添加插件 Image downloader - Imageye。它可以方便地把很多照片一次下载下来。

在 image_embeddings 文件夹中,运行脚本并为变量使用你的值。

cd image_embeddings
python3 create-image-embeddings.py \--es_host='https://localhost:9200' \--es_user='elastic' --es_password='ZgzSt2vHNwA6yPn-fllr' \--ca_certs='/Users/liuxg/elastic/elasticsearch-8.6.1/config/certs/http_ca.crt'

根据图像的数量、它们的大小、你的 CPU 和你的网络连接,此任务将需要一些时间。 在尝试处理完整数据集之前,先试验少量图像。脚本完成后,吧可以使用 Kibana 开发工具验证索引 my-image-embeddings 是否存在并具有相应的文档。

我们在Kibana 中进行查看:

GET _cat/indices/my-image-embeddings?v

 上面命令的响应为:

health status index               uuid                   pri rep docs.count docs.deleted store.size pri.store.size
yellow open   my-image-embeddings h6oUBdHCScWmXOZaf57oWg   1   1        145            0      1.4mb          1.4mb

查看文档,你会看到非常相似的 JSON 对象(如示例)。 你将在图像文件夹中看到图像名称、图像 ID 和相对路径。 此路径用于前端应用程序以在搜索时正确显示图像。JSON 文档中最重要的部分是包含 CLIP 模型生成的密集矢量的 image_embedding。 当应用程序正在搜索图像或类似图像时使用此矢量。

GET my-image-embeddings/_search
{"_index": "my-image-embeddings","_id": "_g9ACIUBMEjlQge4tztV","_score": 6.703597,"_source": {"image_id": "IMG_4032","image_name": "IMG_4032.jpeg","image_embedding": [-0.3415695130825043,0.1906963288784027,.....-0.10289803147315979,-0.15871885418891907],"relative_path": "phone/IMG_4032.jpeg"}
}

使用 Flask 应用程序搜索图像

现在你的环境已全部设置完毕,你可以进行下一步,使用我们作为概念证明提供的 Flask 应用程序,使用自然语言实际搜索图像并查找相似图像。 该 Web 应用程序具有简单的 UI,使图像搜索变得简单。 你可以在此 GitHub 存储库中访问原型 Flask 应用程序。

后台应用程序执行两个任务。 在搜索框中输入搜索字符串后,文本将使用机器学习 _infer 端点进行矢量化。 然后,针对带有向量的索引 my-image-embeddings 执行带有密集向量的查询。

你可以在示例中看到这两个查询。 第一个 API 调用使用 _infer 端点,结果是一个密集矢量。

POST _ml/trained_models/sentence-transformers__clip-vit-b-32-multilingual-v1/_infer
{"docs" : [{"text_field": "Yellow mountain is the most beautiful mountain in China"}]
}

上面的响应如下:

在第二个任务中,搜索查询,我们将使用密集矢量并获得按分数排序的图像。 

GET my-image-embeddings/_search
{"fields": ["image_id","image_name","relative_path"],"_source": false,"knn": {"field": "image_embedding","k": 5,"num_candidates": 10,"query_vector": [0.03395160660147667,0.007704082876443863,0.14996188879013062,-0.10693030804395676,...0.05140634626150131,0.07114913314580917]}
}

要启动并运行 Flask 应用程序,请导航到存储库的根文件夹并配置 .env 文件。 配置文件中的值用于连接到 Elasticsearch 集群。 你需要为以下变量插入值。 这些与图像嵌入生成中使用的值相同。 

.env

ES_HOST='URL:PORT'
ES_USER='elastic'
ES_PWD='password'

为了能够使得我们自构建的 Elasticsearch 集群能够被正确地访问,我们必须把 Elasticsearch 的根证书拷贝到 Flask 应用的相应目录中:

flask-elastic-image-search/app/conf/ca.crt

(.venv) $ pwd
/Users/liuxg/python/flask-elastic-image-search/app/conf
(.venv) $ cp ~/elastic/elasticsearch-8.6.1/config/certs/http_ca.crt ca.crt
overwrite ca.crt? (y/n [n]) y

在上面,我们替换了仓库中原有的证书文件 ca.crt。

准备就绪后,运行主文件夹中的 flask 应用程序并等待它启动。

# In the main directory 
$ flask run --port=5001

如果应用程序启动,你将看到类似于下面的输出,它在末尾指示你需要访问哪个 URL 才能访问该应用程序。

恭喜! 你的应用程序现在应该已启动并正在运行,并且可以通过互联网浏览器在 http://127.0.0.1:5001 上访问。

导航到图像搜索选项卡并输入描述你最佳图像的文本。 尝试使用非关键字或描述性文字。

在下面的示例中,输入的文本是 “Yellow mountain is the most beautiful mountain in China”。 结果显示在我们的数据集中。 如果用户喜欢结果集中的一张特定图像,只需单击它旁边的按钮,就会显示类似的图像。 用户可以无限次地这样做,并通过图像数据集构建自己的路径。

 

我们尝试另外的一个例子。这次我们输入:I love beautiful girls。

搜索也可以通过简单地上传图像来进行。 该应用程序会将图像转换为矢量并在数据集中搜索相似的图像。 为此,导航到第三个选项卡 “Similar Image”,从磁盘上传图像,然后点击 “Search”。

我们可以看到相似的图片。我们尝试使用一个女孩的照片再试试:

 

因为我们在 Elasticsearch 中使用的 NLP(sentence-transformers/clip-ViT-B-32-multilingual-v1)模型是多语言的,支持多语言推理,所以尽量搜索自己语言的图片。 然后也使用英文文本验证结果。我们尝试使用 “黄山是中国最漂亮的山”:

 

请务必注意,使用的模型是通用模型,这些模型非常准确,但你获得的结果会因用例或其他因素而异。 如果你需要更高的精度,则必须采用通用模型或开发自己的模型 —— CLIP 模型只是一个起点。

 

代码摘要

你可以在 GitHub 存储库中找到完整的代码。 你可能正在检查 routes.py 中的代码,它实现了应用程序的主要逻辑。 除了明显的路线定义之外,你还应该关注定义 _infer 和 _search 端点(infer_trained_modelknn_search_images)的方法。 生成图像嵌入的代码位于 create-image-embeddings.py文件中。

总结

现在你已经设置了 Flask 应用程序,你可以轻松地搜索你自己的图像集! Elastic 在平台内提供了矢量搜索的原生集成,避免了与外部进程的通信。 你可以灵活地开发和使用你可能使用 PyTorch 开发的自定义嵌入模型。

语义图像搜索具有其他传统图像搜索方法的以下优点:

  • 更高的准确度:向量相似性捕获上下文和关联,而不依赖于图像的文本元描述。
  • 增强的用户体验:与猜测哪些关键字可能相关相比,描述你正在寻找的内容或提供示例图像。
  • 图像数据库的分类:不用担心对图像进行分类——相似性搜索可以在一堆图像中找到相关图像,而无需对它们进行组织。

如果你的用例更多地依赖于文本数据,你可以在以前的博客中了解更多关于实现语义搜索和将自然语言处理应用于文本的信息。 对于文本数据,向量相似度与传统关键词评分的结合呈现了两全其美的效果。

准备好开始了吗? 在我们的虚拟活动中心报名参加矢量搜索实践研讨会,并在我们的在线论坛中与社区互动。

相关文章:

Elasticsearch:如何在 Elastic 中实现图片相似度搜索

作者&#xff1a;Radovan Ondas 在本文章&#xff0c;我们将了解如何通过几个步骤在 Elastic 中实施相似图像搜索。 开始设置应用程序环境&#xff0c;然后导入 NLP 模型&#xff0c;最后完成为你的图像集生成嵌入。 Elastic 图像相似性搜索概览 >> 如何设置环境 第一步…...

一起Talk Android吧(第五百二十三回:获取位置信息经验总结)

文章目录 整体概述位置权限与蓝牙权限综合使用特殊机型的使用方法官方建议各位看官们大家好,上一回中咱们说的例子是"如何有效地获取位置权限",这一回中咱们说的例子是" 获取位置信息经验总结"。闲话休提,言归正转, 让我们一起Talk Android吧! 整体概…...

发光立方体效果 html+css

一.话不多&#xff0c;看效果 css简单创意特效&#xff0c;关注我看更多简单创意特效~ 二.实现&#xff08;附完整代码&#xff09; 定义标签&#xff1a; <div class"container"><div class"q1"></div><div class"h2"&…...

READ: Large-Scale Neural Scene Rendering for Autonomous Driving

READ: Large-Scale Neural Scene Rendering for Autonomous Driving &#xff1a;面向自动驾驶的大规模神经场景绘制 门卷积 https://www.jianshu.com/p/09fc8490104d https://blog.csdn.net/weixin_44996354/article/details/117409438摘要&#xff1a;论文提出了一种大规模神…...

Linux环境C语言开发基础

C语言是一门面向过程的计算机编程语言&#xff0c;与C、C#、Java等面向对象编程语言有所不同。C语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、仅产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。C语言诞生于美国的贝尔实验室&#xff0c;由丹…...

string类(上)

string类&#xff08;上&#xff09;1.标准库中的string类2.string类对象的常见构造①string()②string(const char* s)③string(size_t n,char c)④string(const string&s)⑤string(const string& str,size_t pos,size_t lennpos)⑥string&#xff08;const char* s,s…...

ElasticSearch快速入门详解(亲测好用,强烈推荐收藏)

3.快速入门 接下来快速看下elasticsearch的使用 3.1.概念 Elasticsearch虽然是一种NoSql库&#xff0c;但最终的目的是存储数据、检索数据。因此很多概念与MySQL类似的。 ES中的概念数据库概念说明索引库&#xff08;indices)数据库&#xff08;Database&#xff09;ES中可…...

出入了解——Vue.js

个人简介&#xff1a;云计算网络运维专业人员&#xff0c;了解运维知识&#xff0c;掌握TCP/IP协议&#xff0c;每天分享网络运维知识与技能。座右铭&#xff1a;海不辞水&#xff0c;故能成其大&#xff1b;山不辞石&#xff0c;故能成其高。个人主页&#xff1a;小李会科技的…...

MySQL8 双主(主主)架构部署实战

前言 大家好&#xff0c;我是 沐风晓月 本文收录于《数据库入门到精通系列》专栏&#xff0c; 更多内容可以关注我的csdn博客。 本文主要讲解MySQL主主架构实战,在开始之前需要根据下面的提示来配置环境&#xff1a; Linux基础命令不熟参考&#xff1a; 《linux基本功-基础…...

【数据结构】第三站:单链表

目录 一、顺序表的缺陷 二、链表 1.链表的概念以及结构 2.链表的分类 3.单链表的逻辑结构与物理结构 三、单链表的实现 1.单链表的定义 2.单链表的接口定义 3.单链表的接口实现 四、单链表的实现完整代码 一、顺序表的缺陷 在上一篇文章中&#xff0c;我们了解了顺序…...

【蓝桥杯2020】七段码

【题目描述】 七段码 HUSTOJ 题目导出文件 [蓝桥杯2020] 第十一届蓝桥杯第二次省赛—填空题E题 七段码 小蓝要用七段码数码管来表示一种特殊的文字。 上图给出了七段码数码管的一个图示&#xff0c;数码管中一共有 7 段可以发光的二 极管&#xff0c;分别标记为 a, b, c,…...

Spark读取JDBC调优

Spark读取JDBC调优&#xff0c;如何调参一、场景构建二、参数设置1.灵活运用分区列实际问题&#xff1a;工作中需要读取一个存放了三四年历史数据的pg数仓表&#xff08;缺少主键id&#xff09;&#xff0c;需要将数据同步到阿里云 MC中&#xff0c;Spark在使用JDBC读取关系型数…...

【文心一言】什么是文心一言,如何获得内测和使用方法。

文心一言什么是文心一言怎么获得内测资格接下来就给大家展示一下文学创作商业文案创作数理逻辑推算中文理解多模态生成用python写一个九九乘法表写古诗前言&#xff1a; &#x1f3e0;个人主页&#xff1a;以山河作礼。 &#x1f4dd;​&#x1f4dd;:本文章是帮助大家了解文心…...

CentOS8服务篇10:FTP服务器配置与管理

一、安装与启动FTP服务器 1、安装VSFTP服务器所需要的安装包 #yum -y install vsftpd 2、查看配置文件参数 Vim /etc/vsftpd/vsftpd.conf &#xff08;1&#xff09;是否允许匿名登录 anonymous_enableYES 该行用于控制是否允许匿名用户登录。 &#xff08;2&…...

笔试强训3.14

一、选择题 1.以下说法错误的是&#xff08;C&#xff09; A.数组是一个对象 B.数组不是一种原生类 C.数组的大小可以任意改变 D.在Java中&#xff0c;数组存储在堆中连续内存空间里 ​ 相关知识点&#xff1a;原生/内置数组是那八个&#xff0c;其他的都是引用的&#xff0c;借…...

elasticsearch 环境搭建和基本操作

参考资料 适合后端编程人员的elasticsearch快速实战教程 ElasticSearch最新实战教程 ElasticSearch配套笔记 自制搜索引擎 https://www.elastic.co/guide/en/elasticsearch/reference/7.17/setup.html restful风格的api REST 设计风格 例如以下springboot示例 RestContr…...

IDEA操作:Springboot项目打包为jar包并运行

在IDEA环境下对Springboot项目打包为jar包且在terminal运行操作 1、 2、 3、注意&#xff1a;在项目目录里创建一个用来存放jar包的文件夹&#xff08;res&#xff09;,该路径不能使用IDEA设置的默认路径&#xff0c;必须手动创建。 4、 5、点击ok后加载运行包 &#xff08;8…...

原理底层计划---JVM

二、JVM对空间大小怎么配置&#xff1f;各区域怎么划&#xff1f; 新生代&#xff1a;短时间生成&#xff0c;可以马上回收 老生代&#xff1a;少部分对象会存在很久&#xff0c;回收策略应不同 三、JVM哪些内存区域会发生内存溢出&#xff08;程序计数器不会&#xff09; …...

CSDN-猜年龄、纸牌三角形、排他平方数

猜年龄 原题链接&#xff1a;https://edu.csdn.net/skill/practice/algorithm-a413078fb6e74644b8c9f6e28896e377/2258 美国数学家维纳(N.Wiener)智力早熟&#xff0c;11岁就上了大学。他曾在1935~1936年应邀来中国清华大学讲学。 一次&#xff0c;他参加某个重要会议&#xf…...

【Linux】软件包管理器 yum

什么是软件包和软件包管理器 在 Linux 下需要安装软件时&#xff0c; 最原始的办法就是下载到程序的源代码&#xff0c; 进行编译得到可执行程序。但是这样太麻烦了&#xff0c;所以有些人就把一些常用的软件提前编译好, 做成软件包 ( 就相当于windows上的软件安装程序)放在服…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...