当前位置: 首页 > news >正文

Flink SQL 的工作机制

前言

Flink SQL 引擎的工作流总结如图所示。

  从图中可以看出,一段查询 SQL / 使用TableAPI 编写的程序(以下简称 TableAPI 代码)从输入到编译为可执行的 JobGraph 主要经历如下几个阶段:

  1. 将 SQL文本 / TableAPI 代码转化为逻辑执行计划(Logical Plan)
  2. Logical Plan 通过优化器优化为物理执行计划(Physical Plan)
  3. 通过代码生成技术生成 Transformations 后进一步编译为可执行的 JobGraph 提交运行

例子1 :考虑如下表达 JOIN 操作的一段 SQL。

SELECT t1.id, 1 + 2 + t1.value AS v 
FROM t1, t2 
WHERE t1.id = t2.id AND t2.id < 1000

一、Logical Planning(逻辑执行计划)

   Flink SQL 引擎使用 Apache Calcite SQL Parser 将 SQL 文本解析为词法树,SQL Validator 获取 Catalog 中元数据的信息进行语法分析和验证,转化为关系代数表达式(RelNode),再由 Optimizer 将关系代数表达式转换为初始状态的逻辑执行计划。

备注:TableAPI 代码使用 TableAPI Validator 对接 Catalog 后生成逻辑执行计划。

二、 Physical Planning on Batch(物理执行计划)

   通过上述一系列操作后,得到了优化后的逻辑执行计划。逻辑执行计划描述了执行步骤和每一步需要完成的操作,但没有描述操作的具体实现方式。而物理执行计划会考虑物理实现的特性,生成每一个操作的具体实现方式。比如 Join 是使用 SortMergeJoin、HashJoin 或 BroadcastHashJoin 等。优化器在生成逻辑执行计划时会计算整棵树上每一个节点的 Cost,对于有多种实现方式的节点(比如 Join 节点),优化器会展开所有可能的 Join 方式分别计算。最终整条路径上 Cost 最小的实现方式就被选中成为 Final Physical Plan。

回顾上述的例子1 ,当它以批模式执行,同时可以拿到输入表的 Statistics 信息。在经过前述优化后,表 t2 到达 Join 节点时只有 1,000 条数据,使用 BroadcastJoin 的开销相对最低,则最终的 Physical Plan 如下图所示。

三、Translation & Code Generation(转换算子)

  代码生成(Code Generation) 在计算机领域是一种广泛使用的技术。在 Physical Plan 到生成 Transformation Tree (转换算子树)过程中就使用了 Code Generation。

回顾例子1 ,以 表 t2 之上的 Calc 节点 t2.id < 1000 表达式为例,通过 Code Generation 后生成了描述 Transformation Operator(flink转换算子) 的一段 Java 代码,将接收到的 Row 中 id < 1000 的 Row 发送到下一个 Operator。

    Flink SQL 引擎会将 Physical Plan 通过 Code Generation 翻译为 Transformations,再进一步编译为可执行的 JobGraph。

内容有误请指出~

参考文章:

https://developer.aliyun.com/article/765311

相关文章:

Flink SQL 的工作机制

前言 Flink SQL 引擎的工作流总结如图所示。 从图中可以看出&#xff0c;一段查询 SQL / 使用TableAPI 编写的程序&#xff08;以下简称 TableAPI 代码&#xff09;从输入到编译为可执行的 JobGraph 主要经历如下几个阶段&#xff1a; 将 SQL文本 / TableAPI 代码转化为逻辑执…...

[AI Mem0] 源码解读,带你了解 Mem0 的实现

Mem0 的 CRUD 到底是如何实现的&#xff1f;我们来看下源码。 使用 先来看下&#xff0c;如何使用 Mem0 import os os.environ["OPENAI_API_KEY"] "sk-xxx"from mem0 import Memorym Memory()# 1. Add: Store a memory from any unstructured text re…...

【LLM】-10-部署llama-3-chinese-8b-instruct-v3 大模型

目录 1、模型下载 2、下载项目代码 3、启动模型 4、模型调用 4.1、completion接口 4.2、聊天&#xff08;chat completion&#xff09; 4.3、多轮对话 4.4、文本嵌入向量 5、Java代码实现调用 由于在【LLM】-09-搭建问答系统-对输入Prompt检查-CSDN博客 关于提示词注入…...

C语言 之 理解指针(4)

文章目录 1. 字符指针变量2. 数组指针变量2.1 对数组指针变量的理解2.2 数组指针变量的初始化 3. 二维数组传参的本质4. 函数指针变量4.1 函数指针变量的创建4.2 函数指针变量的使用 5. 函数指针数组 1. 字符指针变量 我们在前面使用的主要是整形指针变量&#xff0c;现在要学…...

Java设计模式—单例模式(Singleton Pattern)

目录 一、定义 二、应用场景 三、具体实现 示例一 示例二 四、懒汉与饿汉 饿汉模式 懒汉模式 五、总结 六、说明 一、定义 二、应用场景 ‌单例模式的应用场景主要包括以下几个方面&#xff1a; ‌日志系统&#xff1a;在应用程序中&#xff0c;通常只需要一个日…...

AV1帧间预测(二):运动补偿

运动补偿(Motion Compensation,MC)是帧间预测最基础的工具&#xff0c;AV1支持两种运动补偿方式&#xff0c;一种是传统的平移运动补偿&#xff0c;另一种是仿射运动补偿。下面分别介绍这两种运动补偿方法。 平移运动补偿 平移运动补偿是最传统的运动补偿方式&#xff0c;H.26…...

数学建模(5)——逻辑回归

一、二分类 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklea…...

【C++高阶】:深入探索C++11

✨ 心似白云常自在&#xff0c;意如流水任东西 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;C学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f4…...

6. 自定义Docker镜像

如何自定义Docker镜像&#xff1a;从基础到实践 Docker作为一个容器化平台&#xff0c;使得应用的打包、分发和运行变得更加高效和便捷。本文将详细介绍如何自定义一个Docker镜像&#xff0c;包括镜像的构成、分层原理、创建自定义镜像的具体步骤&#xff0c;并演示如何打包和…...

「12月·长沙」人工智能与网络安全国际学术会议(ISAICS 2024)

人工智能与网络安全国际学术会议(ISAICS 2024)将于2024年12月20日-2024年12月22日在湖南长沙召开。会议中发表的文章将会被收录,并于见刊后提交EI核心索引。会议旨在在为国内与国际学者搭建交流平台,推进不同学科领域的融合发展&#xff0c;就当今人工智能与网络安全范畴内各学…...

【技术支持案例】使用S32K144+NSD8381驱动电子膨胀阀

文章目录 1. 前言2. 问题描述3. 理论分析3.1 NSD8381如何连接电机3.2 S32K144和NSD8381的软件配置 4.测试验证4.1 测试环境4.2 测试效果4.3 测试记录 1. 前言 最近有客户在使用S32K144NSD8381驱动电子膨胀阀时&#xff0c;遇到无法正常驱动电子膨胀阀的情况。因为笔者也是刚开…...

第二期:集成电路(IC)——智能世界的微观建筑大师

嘿&#xff0c;小伙伴们&#xff01;&#x1f44b; 我是你们的老朋友小竹笋&#xff0c;一名热爱创作和技术的工程师。上一期我们聊了聊AI芯片&#xff0c;这次我们要深入到更微观的层面&#xff0c;来探究集成电路&#xff08;IC&#xff09;的世界。准备好一起探索了吗&#…...

基于物联网的区块链算力网络,IGP/BGP协议

目录 基于物联网的区块链算力网络 IGP/BGP协议 IGP(内部网关协议) BGP(边界网关协议) 内部使用ISP的外部使用BGP的原因 一、网络规模和复杂性 二、路由协议的特性 三、满足业务需求 四、结论 基于物联网的区块链算力网络 通 过 多个物联网传感器将本地计算…...

每日一题~960 div2 A+B+C(简单奇偶博弈,构造,观察性质算贡献)

A题意&#xff1a; N 长的数组。 一次操作&#xff1a; 最开始的mx 为零。 选出一个数&#xff08;使得这个数>mx) ,之后将mx 更新为这个数&#xff0c;将这个数置为零。 不能做这个操作的&#xff0c;输。 问是否有先手赢的策略。有的话&#xff0c;输出yes 否则no 当时一…...

音视频入门基础:H.264专题(17)——FFmpeg源码获取H.264裸流文件信息(视频压缩编码格式、色彩格式、视频分辨率、帧率)的总流程

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…...

Aboboo一些操作

常用快捷键⌨ 快捷键/操作方式 功能 鼠标中键/Esc 进入/退出全屏 空格/Tab 暂停/恢复播放 左/右箭头 快退/快进 Ctrl-左/右箭头 30秒快退/快进 Alt-左/右箭头 60秒快退/快进 Ctrl-Alt-左/右箭头 播放速率调节 PageUp/PageDown 上一句/下一句 上下箭头/滚轮 …...

获取行号LineNumberReader

(每日持续更新&#xff09;jdk api之LineNumberReader基础、应用、实战-CSDN博客...

python数据结构与算法

0.时间复杂度和空间复杂度 快速判断算法时间复杂度&#xff1a;算法运行时间 1.确定问题规模n 2.循环减半 logn 3.k层关于n的循环 n^k 空间复杂度&#xff1a;评估算法内存占用大小 使用几个变量 O&#xff08;1&#xff09; 使用长度为n的一维列表 O&#xff08;n&#xff09…...

大数据学习之Flink基础(补充)

Flink基础 1、系统时间与事件时间 系统时间&#xff08;处理时间&#xff09; 在Sparksreaming的任务计算时&#xff0c;使用的是系统时间。 假设所用窗口为滚动窗口&#xff0c;大小为5分钟。那么每五分钟&#xff0c;都会对接收的数据进行提交任务. 但是&#xff0c;这里有…...

C++基础语法:友元

前言 "打牢基础,万事不愁" .C的基础语法的学习."学以致用,边学边用",编程是实践性很强的技术,在运用中理解,总结. 以<C Prime Plus> 6th Edition(以下称"本书")的内容开展学习 引入 友元提供了一种特别的方式,访问对象私有数据. 友元有三…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...