小白学Pytorch系列--Torch API (7)
小白学Pytorch系列–Torch API (7)
Comparison Ops
allclose
此函数检查输入和其他是否满足条件:
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
argsort
返回沿给定维度按值升序对张量进行排序的索引。
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],[ 0.1598, 0.0788, -0.0745, -1.2700],[ 1.2208, 1.0722, -0.7064, 1.2564],[ 0.0669, -0.2318, -0.8229, -0.9280]])>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],[3, 2, 1, 0],[2, 1, 0, 3],[3, 2, 1, 0]])
eq
计算逐元素相等性
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ True, False],[False, True]])
equal
如果两个张量具有相同的大小和元素,则为 True,否则为 False。
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
True
ge
计算输入≥其他元素。
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, True], [False, True]])
greater_equal
torch.ge()
的别名
gt
计算输入>其他元素。
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [False, False]])
greater
torch.gt()
的别名
isclose
返回一个带有布尔元素的新张量,表示输入的每个元素是否“接近”其他元素的相应元素。 亲密度定义为:
>>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4)))
tensor([ True, False, False])
>>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5)
tensor([True, True])
isfinite
返回一个新的张量,其中包含表示每个元素是否有限的布尔元素。
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([True, False, True, False, False])
isin
测试元素的每个元素是否在 test_elements 中。 返回与元素相同形状的布尔张量,对于 test_elements 中的元素为 True,否则为 False。
torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3]))
tensor([[False, True],[ True, False]])
isinf
测试输入的每个元素是否为无穷大(正无穷大或负无穷大)。
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([False, True, False, True, False])
isposinf
测试输入的每个元素是否为正无穷大。
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isposinf(a)
tensor([False, True, False])
isneginf
测试输入的每个元素是否为负无穷大。
>>> a = torch.tensor([-float('inf'), float('inf'), 1.2])
>>> torch.isneginf(a)
tensor([ True, False, False])
isnan
返回一个新的张量,其中布尔元素表示输入的每个元素是否为NaN。当复数值的实部和/或虚部为NaN时,将其视为NaN。
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([False, True, False])
isreal
返回一个新的张量,其中布尔元素表示输入的每个元素是否为实值。所有实数类型都被认为是实数。当复数值的虚部为0时,它们被认为是实数。
>>> torch.isreal(torch.tensor([1, 1+1j, 2+0j]))
tensor([True, False, True])
kthvalue
返回一个命名元组(值、索引),其中值是给定维度dim中输入张量每行的第k个最小元素。索引是找到的每个元素的索引位置。
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.kthvalue(x, 4)
torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3))>>> x=torch.arange(1.,7.).resize_(2,3)
>>> x
tensor([[ 1., 2., 3.],[ 4., 5., 6.]])
>>> torch.kthvalue(x, 2, 0, True)
torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
le
计算输入≤其他元素。
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[True, False], [True, True]])
less_equal
torch.le()
的别名。
lt
计算输入<其他元素。
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, False], [True, False]])
less
torch.lt()
的别名
maximum
计算输入和其他元素的元素最大值。
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.maximum(a, b)
tensor([3, 2, 4])
minimum
计算输入和其他的元素最小值。
>>> a = torch.tensor((1, 2, -1))
>>> b = torch.tensor((3, 0, 4))
>>> torch.minimum(a, b)
tensor([1, 0, -1])
fmax
计算输入和其他的元素最大值。
>>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')])
>>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')])
>>> torch.fmax(a, b)
tensor([9.7000, 0.5000, 3.1000, nan])
fmin
计算输入和其他的元素最小值。
>>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')])
>>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')])
>>> torch.fmin(a, b)
tensor([-9.3000, 0.1000, 2.1000, nan])
ne
计算输入≠其他元素。
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, True], [True, False]])
not_equal
torch.ne()
的别名。
sort
将输入张量的元素沿给定维度按值升序排列。
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162, 0.0608, 0.6719, 2.3332],[-0.5793, 0.0061, 0.6058, 0.9497],[-0.5071, 0.3343, 0.9553, 1.0960]])
>>> indices
tensor([[ 1, 0, 2, 3],[ 3, 1, 0, 2],[ 0, 3, 1, 2]])>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162, 0.6719, -0.5793],[ 0.0608, 0.0061, 0.9497, 0.3343],[ 0.6058, 0.9553, 1.0960, 2.3332]])
>>> indices
tensor([[ 2, 0, 0, 1],[ 0, 1, 1, 2],[ 1, 2, 2, 0]])
>>> x = torch.tensor([0, 1] * 9)
>>> x.sort()
torch.return_types.sort(values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1]))
>>> x.sort(stable=True)
torch.return_types.sort(values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]),indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17]))
topk
返回给定输入张量沿给定维度的k个最大元素。
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.topk(x, 3)
torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2]))
msort
按值升序排列输入张量的第一个维度上的元素。
>>> t = torch.randn(3, 4)
>>> t
tensor([[-0.1321, 0.4370, -1.2631, -1.1289],[-2.0527, -1.1250, 0.2275, 0.3077],[-0.0881, -0.1259, -0.5495, 1.0284]])
>>> torch.msort(t)
tensor([[-2.0527, -1.1250, -1.2631, -1.1289],[-0.1321, -0.1259, -0.5495, 0.3077],[-0.0881, 0.4370, 0.2275, 1.0284]])
相关文章:

小白学Pytorch系列--Torch API (7)
小白学Pytorch系列–Torch API (7) Comparison Ops allclose 此函数检查输入和其他是否满足条件: >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) False >>> torch.allclose(torch.tensor([10000., 1e-…...

函数(上)——“Python”
各位CSDN的uu们你们好呀,今天小雅兰的内容是Python的函数呀,下面,就让我们进入函数的世界吧 首先可以选择性地看一下小雅兰很久之前写的C语言函数章节的知识: 函数——“C”_认真学习的小雅兰.的博客-CSDN博客 函数递归…...

ChatGPT说:如何利用ChatGPT变现?躺着赚钱不是梦。
您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦。 💪🏻 1. Python基础专栏,基础知识一网打尽,9.9元买不了吃亏,买不了上当。 Python从入门到精通 😁 2. 毕业设计专栏&…...

4.网络爬虫—Post请求(实战演示)
网络爬虫—Post请求实战演示POST请求GET请求POST请求和GET请求的区别获取二进制数据爬[百度官网](https://www.baidu.com/)logo实战发送post请求百度翻译实战使用session发送请求模拟登录17k小说网常见问题前言: 📝📝此专栏文章是专门针对…...

【视频文稿】车载Android应用开发与分析 - 开发系统应用
本期视频地址:https://www.bilibili.com/video/BV1NY411z7TK/ 前言 Hello,大家好,我是林栩。 开发车载应用,其实主要都是在Android系统中编写各种系统应用,所以上期视频先介绍了Android系统源码的下载和编译流程&…...

Scala流程控制
目录 单分支 双分支 多分支 for 循环控制 循环守卫 循环步长 循环嵌套 循环返回值 While 和 do..While 循环控制 While循环控制 do..While 循环控制 循环中断 单分支 if (条件表达式) {执行代码块 }var age StdIn.readShort()if (age < 18){println("童年&quo…...

人脸活体检测系统(Python+YOLOv5深度学习模型+清新界面)
摘要:人脸活体检测系统利用视觉方法检测人脸活体对象,区分常见虚假人脸,以便后续人脸识别,提供系统界面记录活体与虚假人脸检测结果。本文详细介绍基于YOLOv5深度学习技术的人脸活体检测系统,在介绍算法原理的同时&…...

prometheus03-如何导出prometheus指标
Prometheus是一个开源的监控系统和时间序列数据库,用于收集和存储服务的指标数据。要导出Prometheus指标,你需要使用或实现一个Prometheus Exporter。以下是一个简单的指南,分为三个主要步骤: 选择或实现Prometheus Exporter Pr…...

Linux驱动开发——串口设备驱动
Linux驱动开发——串口设备驱动 一、串口简介 串口全称叫做串行接口,通常也叫做 COM 接口,串行接口指的是数据一个一个的顺序传输,通信线路简单。使用两条线即可实现双向通信,一条用于发送,一条用于接收。串口通信距…...

LeetCode--缺失的第一个正数(41)和 接雨水(42)
目录 缺失的第一个正数 接雨水 0ms,100% 代码 缺失的第一个正数 来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/first-missing-positive 题目:给你一个未排序的整数数组 nums ,请…...

java源码阅读---ReentrantLock源码解析
ReentrantLock源码解读 在讲ReentrantLock之前我们先看一下Lock接口里的方法 Lock接口中的方法 lock()方法 void lock(); //直接加锁,如果加锁失败什么也不返回lockInterruptibly()方法 void lockInterruptibly() throws InterruptedException;lockInterruptibly()方法能够…...

OpenCv + Qt5.12.2 文字识别
OpenCv Qt5.12.2 文字检测与文本识别 前言 好久没有进行一些相关的更新的了,去年一共更新了四篇,最近一直在做音视频相关的直播服务,又是重新学习积攒经验的一个过程。去年疫情也比较严重,等到解封,又一直很忙&a…...

网络作业1【计算机网络】
网络作业1【计算机网络】前言推荐网络作业1一. 单选题(共7题,58.1分)二. 多选题(共1题,8.3分)三. 判断题(共4题,33.6分)最后前言 2023-3-13 20:11:42 以下内容源自《计…...

常见背包问题
一.前言若你想学习或正在学习动态规划,背包问题一定是你需要了解的一种题型,并且大多数人最初都是从背包问题入坑进而打开动态规划这一大门。背包问题分为多种,你可以先掌握最常见的主要是三类:01背包、完全背包、多重背包二.分析…...

【python】python编译器以及安装
✅作者简介:一名在读大二学生,希望大家多多支持 🔥系列专栏:python 💬个人主页:小园园子的CSDN博客 python编译器以及安装一、编译器与解释器详细内容Python解释器种类Python的运行机制二、python环境搭建p…...

Effective C++快速复习
Effective C快速复习 习惯 C 01 视 C 为一个语言联邦:C、Object-Oriented C、Template C、STL 02 尽量以 const, enum, inline 替换 #define:其实是尽量以编译器替换预处理器比较好,因为 #define 只是简单的字符串匹配替换,编译…...

【华为OD机试真题JAVA】绘图机器的绘图问题
标题:绘图机器的绘图问题| 时间限制:1秒 | 内存限制:262144K | 语言限制:不限 绘图机器的绘图笔初始位置在原点(0,0) 机器启动后按照以下规则来进行绘制直线 1. 尝试沿着横线坐标正向绘制直线 直到给定的终点E 2. 期间可以通过指令在纵坐标轴方向进行偏移 off…...

GPT-4最震撼我的一点
昨天我看了一遍OpenAI发的视频和论文,最震撼我的并不是根据手绘草图生成HTML页面代码,因为草图太简单,对于复杂的有交互的界面,还不知道它的能力究竟如何,能不能生成准确的、清晰的代码,我再实验一下再给大…...

LeetCode-复制带随机指针的链表
题目描述: 给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成,其中每个新节点的值都设为其对应的…...

如何在Unity中实现AStar寻路算法及地图编辑器
文章目录AStar算法简介实现Node节点节点间的估价算法核心邻节点的搜索方式地图编辑器简介实现绘制地图网格障碍/可行走区域地图数据存储AStar算法 简介 Unity中提供了NavMesh导航寻路的AI功能,如果项目不涉及服务端它应该能满足大部分需求,但如果涉及服…...

线性代数之矩阵
一、思维导图二、矩阵及其运算1、矩阵的定义注:零矩阵:元素均为0 的矩阵,通常记作0m*n称为矩阵的类型。满足阶梯形矩阵 行简化的阶梯形矩阵即满足如下条件的矩阵: (1)阶梯形; (2)非零首元所在列其余元素均为0 ; (3) 非…...

【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现。 昨天下午百度发布了文心一言,对标ChatGPT,录屏无实机演示让百度股价暴跌。但是晚上百度就…...

基于STM32的ADC采样及各式滤波实现(HAL库,含VOFA+教程)
前言:本文为手把手教学ADC采样及各式滤波算法的教程,本教程的MCU采用STM32F103ZET6。以HAL库的ADC采样函数为基础进行教学,通过各式常见滤波的实验结果进行分析对比,搭配VOFA工具直观的展示滤波效果。ADC与滤波算法都是嵌入式较为…...

Redis高级篇
文章目录面试题库redis有哪些用法?redis单线程时代性能依然很快的原因?主线程和IO线程怎么协作完成请求处理的BigKey(重要)什么算是BigKey?怎么发现BigKey?怎么删除bigkey?bigkey生产调优缓存双…...

sess.close()这句话一般是干什么的,在代码中可以不加么?
sess.close()这句话是用于关闭TensorFlow会话对象的方法。 关闭会话对象可以释放资源,避免内存泄漏,以及清除图中的变量和操作。 在代码中是否可以不加这句话,取决于你是如何创建和使用会话对象的。如果你使用了with语句来创建和管理会话对…...

网络舆情监测处置平台,TOOM舆情如何做好舆情风险点及防控措施?
网络舆情监测处置平台是一个综合性的系统,旨在帮助企业、政府或其他组织有效地管理和处置网络舆情。从多个角度来分析该平台,我们可以考虑以下几个方面: 1,技术实现 网络舆情监测处置平台的技术实现是其核心,它通常采…...

百度文心一言对标 ChatGPT,你怎么看?
文心一言 VS ChatGPT接受不完美 期待进步里程碑意义文心一言初体验✔ 文学创作✔ 商业文案创作✔ 数理逻辑推算✔ 中文理解✔ 多模态生成写在最后何为文心?“文”就是我们中华语言文字中的文,“心”是希望该语言模型可以用心的去理解语言,用心…...

阿里笔试2023-3-15
太菜了,记录一下笔试题目,代码有更好解法欢迎分享。 1、满二叉子树的数量。 给定一颗二叉树,试求这课二叉树有多少个节点满足以该节点为根的子树是满二叉树?满二叉树指每一层都达到节点最大值。 第一行输入n表示节点数量ÿ…...

STM32:TIM定时器输出比较(OC)
一、输出比较简介 1、输出比较 OC(Output Comapre)输出比较输出比较可以通过比较CNT(时基单元)和CCR(捕获单元)寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频…...

HTTPS 加密协议
✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 目录HTTPS"加密" 是什么HTTPS 的工作过程引入证书HTTPS http 安全层 (SSL) SSL 用来加密的协议,也叫 TLS …...