当代互联网打工人的生存现状,看完泪流满面!






欢迎私信小编,了解更多产品信息呦~
相关文章:
当代互联网打工人的生存现状,看完泪流满面!
欢迎私信小编,了解更多产品信息呦~...
花几千上万学习Java,真没必要!(三十八)
测试代码1: package iotest.com; import java.nio.charset.StandardCharsets; import java.io.UnsupportedEncodingException; public class StringByteConversion { public static void main(String[] args) throws UnsupportedEncodingException { // 原始字…...
Zilliz 2025届校园招聘正式启动,寻找向量数据库内核开发工程师
为了解决非结构化数据处理问题,我们构建了向量数据库-Milvus! Milvus 数据库不仅是顶级开源基金会 LF AI&Data 的毕业项目,还曾登上数据库顶会SIGMOD、VLDB,在全球首届向量检索比赛中夺冠。目前,Milvus 项目已获得超过 2.8w s…...
TwinCAT3 新建项目教程
文章目录 打开TwinCAT 新建项目(通过TcXaeShell) 新建项目(通过VS 2019)...
大模型算法面试题(十九)
本系列收纳各种大模型面试题及答案。 1、SFT(有监督微调)、RM(奖励模型)、PPO(强化学习)的数据集格式? SFT(有监督微调)、RM(奖励模型)、PPO&…...
应用地址信息获取新技巧:Xinstall来助力
在移动互联网时代,应用获取用户地址信息的需求越来越普遍。无论是为了提供个性化服务,还是进行精准营销,地址信息都扮演着至关重要的角色。然而,如何合规、准确地获取这一信息,却是许多开发者面临的挑战。今天…...
图的最短路径算法:Dijkstra、Floyd-Warshall、Bellman-Ford
本文意在探讨图中最短路径算法 Dijkstra、Floyd-Warshall、Bellman-Ford 的对比和细节 整体分为如下四部分 总结性的比较了 Dijkstra、Floyd-Warshall、Bellman-FordDijkstra 算法介绍Floyd-Warshall 算法介绍Bellman-Ford 算法介绍 其中1、2、3 算法介绍部分会比较简洁&…...
Camera的pipline(TODO)
(TODO)...
非关系数据库-非关系数据库入门指南
非关系数据库入门指南 1. 引言:非关系数据库的兴起 在互联网技术飞速发展的今天,传统的关系型数据库面对海量数据和高并发访问时逐渐显得力不从心。于是,非关系数据库(NoSQL,Not Only SQL)应运而生&…...
看门狗IWDG、WWDG(速记版)
内置的看门狗有 独立看门狗 IWDG 和 窗口看门狗 WWDG 都用来在程序卡死的时候复位程序。 独立看门狗只有一个最晚时间界限。窗口看门狗有一个最早界限和最晚界限。独立看门狗有独立的时钟,一般设置来源时钟LSI40KHz。窗口看门狗挂靠在APB1总线上36MHz。 IWDG IWDG处于VDD供…...
ETL工程师角度下的SQL优化
作为ETL(Extract, Transform, Load)工程师,SQL优化是提高数据处理和分析效率的关键一环。优化SQL查询可以显著降低数据处理时间,提高ETL过程的性能。本文将从 合理设计数据模型:在ETL过程中,正确的数据模型…...
阿里云实时计算Flink在多行业的应用和实践
摘要:本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。内容分为以下四个部分: 业…...
开源项目与工具:C++中的高性能并发库 - Intel Threading Building Blocks (TBB)
在C++的世界里,随着多核处理器成为常态,如何有效利用这些多核资源以实现高性能的并发编程成为了开发者们关注的焦点。Intel Threading Building Blocks (TBB) 作为一个专为并行编程设计的C++库,凭借其易用性、高效性和可扩展性,在高性能计算、游戏开发、金融分析等多个领域…...
Chapter 22 数据可视化——折线图
欢迎大家订阅【Python从入门到精通】专栏,一起探索Python的无限可能! 文章目录 前言一、Pyecharts介绍二、安装Pyecharts三、全局配置项四、绘制折线图 前言 在大数据时代,数据可视化成为了分析和展示数据的重要手段。Pyecharts 是一个基于 …...
管理流创建schema流程源码解析
一、简析 schema是pulsar重要的功能之一,现在就一起从源码的视角看下管理流创建schema时客户端和服务端的表现 客户端 客户端主要经历以下四个步骤 创建Schema实例 根据数据类型创建相对应的实例,例如Avro创建AvroSchema、JSON创建JSONSchema等 获取…...
【iOS】iOS内存五大分区
iOS内存五大分区 总揽 iOS中,内存主要分为五大区域:栈区,堆区,全局区/静态区,常量区和代码区。总览图如下。 这个图我觉得更好记,因为下面是低地址,上面是高地址,是比较符合日常…...
【项目实战】—— 高并发内存池
文章目录 什么是高并发内存池?项目介绍一、项目背景二、项目目标三、核心组件四、关键技术五、应用场景六、项目优势 什么是高并发内存池? 高并发内存池是一种专门设计用于高并发环境下的内存管理机制。它的原型是Google的一个开源项目tcmallocÿ…...
二叉搜索树的第 k 大的节点
题目描述 给定一棵二叉搜索树,请找出其中第 k 大的节点。 解题基本知识 二叉搜索树(Binary Search Tree)又名二叉查找树、二叉排序树。它是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子…...
利用langchain 做大模型 Few-shot Learning 提示,包括固定和向量相似的动态样本筛选
文章目录 few-shotFixed Examples 固定样本Dynamic few-shot prompting 动态样本提示辅助参考资料 few-shot 相比大模型微调,在有些情况下,我们更想使用 Few-shot Learning 通过给模型喂相关样本示例,让模型能够提升相应任务的能力。 固定样…...
基于python的百度迁徙迁入、迁出数据分析(五)
终于在第五篇文章我们进入了这个系列的正题:数据分析 这里我选择上海2024年5月1日——5月5日的迁入、迁出数据作为分析的基础,首先选择节假日的数据作为分析的原因呢,主要是节假日人们出行目的比较单一(出游、探亲)&a…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
