笔记小结:《利用Python进行数据分析》二进制数据格式存储与web交互
提示:此节内容仅作了解即可
目录
二进制数据格式
使用HDF5
读取Microsoft Excel文件
二进制数据格式
实现数据的高效二进制格式存储最简单的办法之一是使用Python内置的pickle序列化。
Python 的 pickle 模块是一个用于序列化和反序列化 Python 对象结构的模块。它允许你将 Python 的任何对象转换为字节流,这样你就可以将这些对象存储在文件中,或者通过网络传输。同样,pickle 也可以用来从字节流中恢复出原来的对象。
pickle模块非常强大,它能够处理几乎所有的 Python 数据类型,包括但不限于列表、字典、类实例等。但是,使用 pickle时需要注意安全性问题,因为反序列化恶意构造的数据可能会执行不安全的代码。因此,通常不建议在不信任的数据源上使用 pickle。如果需要在不安全的环境中使用序列化,可以考虑使用 json模块,尽管 json 模块只能序列化基本的数据类型。
pandas对象都有一个用于将数据以pickle格式保存到磁盘上的to_pickle方法:
In [87]: frame = pd.read_csv('examples/ex1.csv')
In [88]: frame
Out[88]: a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [89]: frame.to_pickle('examples/frame_pickle')
你可以通过pickle直接读取被pickle化的数据,或是使用更为方便的pandas.read_pickle:
In [90]: pd.read_pickle('examples/frame_pickle')
Out[90]: a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
使用HDF5
HDF5是一种存储大规模科学数组数据的非常好的文件格式。它可以被作为C标准库,带有许多语言的接口,如Java、Python和MATLAB等。HDF5中的HDF指的是层次型数据格式(hierarchical data format)。每个HDF5文件都含有一个文件系统式的节点结构,它使你能够存储多个数据集并支持元数据。与其他简单格式相比,HDF5支持多种压缩器的即时压缩,还能更高效地存储重复模式数据。对于那些非常大的无法直接放入内存的数据集,HDF5就是不错的选择,因为它可以高效地分块读写。
虽然可以用PyTables或h5py库直接访问HDF5文件,pandas提供了更为高级的接口,可以简化存储Series和DataFrame对象。HDFStore类可以像字典一样,处理低级的细节:
In [92]: frame = pd.DataFrame({'a': np.random.randn(100)})
In [93]: store = pd.HDFStore('mydata.h5')
In [94]: store['obj1'] = frame
In [95]: store['obj1_col'] = frame['a']
In [96]: store
Out[96]:
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
/obj1 frame (shape->[100,1])
/obj1_col series (shape->[100])
/obj2 frame_table (typ->appendable,nrows->100,ncols->1,indexers->
[index])
/obj3 frame_table (typ->appendable,nrows->100,ncols->1,indexers->
[index])
HDF5文件中的对象可以通过与字典一样的API进行获取:
In [97]: store['obj1']
Out[97]: a
0 -0.204708
1 0.478943
2 -0.519439
3 -0.555730
4 1.965781
.. ...
95 0.795253
96 0.118110
97 -0.748532
98 0.584970
99 0.152677
[100 rows x 1 columns]
HDFStore支持两种存储模式,’fixed’和’table’。后者通常会更慢,但是支持使用特殊语法进行查询操作:
In [98]: store.put('obj2', frame, format='table')
In [99]: store.select('obj2', where=['index >= 10 and index <= 15'])
Out[99]: a
10 1.007189
11 -1.296221
12 0.274992
13 0.228913
14 1.352917
15 0.886429
In [100]: store.close()
put是store[‘obj2’] = frame方法的显示版本,允许我们设置其它的选项,比如格式。
pandas.read_hdf函数可以快捷使用这些工具:
In [101]: frame.to_hdf('mydata.h5', 'obj3', format='table')
In [102]: pd.read_hdf('mydata.h5', 'obj3', where=['index < 5'])
Out[102]: a
0 -0.204708
1 0.478943
2 -0.519439
3 -0.555730
4 1.965781
读取Microsoft Excel文件
pandas的ExcelFile类或pandas.read_excel函数支持读取存储在Excel 2003(或更高版本)中的表格型数据。这两个工具分别使用扩展包xlrd和openpyxl读取XLS和XLSX文件。你可以用pip或conda安装它们。
要使用ExcelFile,通过传递xls或xlsx路径创建一个实例:
In [104]: xlsx = pd.ExcelFile('examples/ex1.xlsx')
存储在表单中的数据可以read_excel读取到DataFrame:
In [105]: pd.read_excel(xlsx, 'Sheet1')
Out[105]: a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
如果要读取一个文件中的多个表单,创建ExcelFile会更快,但你也可以将文件名传递到pandas.read_excel:
In [106]: frame = pd.read_excel('examples/ex1.xlsx', 'Sheet1')
In [107]: frame
Out[107]: a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
如果要将pandas数据写入为Excel格式,你必须首先创建一个ExcelWriter,然后使用pandas对象的to_excel方法将数据写入到其中:
In [108]: writer = pd.ExcelWriter('examples/ex2.xlsx')
In [109]: frame.to_excel(writer, 'Sheet1')
In [110]: writer.save()
你还可以不使用ExcelWriter,而是传递文件的路径到to_excel:
In [111]: frame.to_excel('examples/ex2.xlsx')
Web APIs交互
为了搜索最新的30个GitHub上的pandas主题,我们可以发一个HTTP GET请求,使用requests扩展库:
In [113]: import requests
In [114]: url = 'https://api.github.com/repos/pandas-dev/pandas/issues'
In [115]: resp = requests.get(url)
In [116]: resp
Out[116]: <Response [200]>
响应对象的json方法会返回一个包含被解析过的JSON字典,加载到一个Python对象中:
In [117]: data = resp.json()
In [118]: data[0]['title']
Out[118]: 'Period does not round down for frequencies less that 1 hour'
data中的每个元素都是一个包含所有GitHub主题页数据(不包含评论)的字典。我们可以直接传递数据到DataFrame,并提取感兴趣的字段:
In [119]: issues = pd.DataFrame(data, columns=['number', 'title',.....: 'labels', 'state'])
In [120]: issues
Out[120]:number title \
0 17666 Period does not round down for frequencies les...
1 17665 DOC: improve docstring of function where
2 17664 COMPAT: skip 32-bit test on int repr
3 17662 implement Delegator class
4 17654 BUG: Fix series rename called with str alterin...
.. ... ...
25 17603 BUG: Correctly localize naive datetime strings...
26 17599 core.dtypes.generic --> cython
27 17596 Merge cdate_range functionality into bdate_range
28 17587 Time Grouper bug fix when applied for list gro...
29 17583 BUG: fix tz-aware DatetimeIndex + TimedeltaInd... labels state
0 [] open
1 [{'id': 134699, 'url': 'https://api.github.com... open
2 [{'id': 563047854, 'url': 'https://api.github.... open
3 [] open
4 [{'id': 76811, 'url': 'https://api.github.com/... open
.. ... ...
25 [{'id': 76811, 'url': 'https://api.github.com/... open
26 [{'id': 49094459, 'url': 'https://api.github.c... open
27 [{'id': 35818298, 'url': 'https://api.github.c... open
28 [{'id': 233160, 'url': 'https://api.github.com... open
29 [{'id': 76811, 'url': 'https://api.github.com/... open
[30 rows x 4 columns]
相关文章:
笔记小结:《利用Python进行数据分析》二进制数据格式存储与web交互
提示:此节内容仅作了解即可 目录 二进制数据格式 使用HDF5 读取Microsoft Excel文件 二进制数据格式 实现数据的高效二进制格式存储最简单的办法之一是使用Python内置的pickle序列化。 Python 的 pickle 模块是一个用于序列化和反序列化 Python 对象结构的模块…...
电脑桌面图标变白了?3个方法20秒钟轻松解
电脑桌面图标变白了?3个方法20秒钟轻松解 ⚠️电脑桌面图标变白了,3种方法轻松解决 🚸方法一和方法二属于治标不治本的解决方法,但操作较为简单,在不同情况下有不成功的可能,方法三相对复杂一些,…...
数据治理,管什么?
元数据(Metadata):通俗地说就是描述数据的数据,比如数据的名称、属性、分类、字段信息、大小、标签等等。要做好数据的管理,元数据起到了举足轻重的作用。 参考数据(Reference Data)࿱…...
【前端】JavaScript入门及实战121-125
文章目录 121 滚轮事件122 键盘事件123 键盘移动div124 BOM125 History 121 滚轮事件 <!DOCTYPE html> <html> <head> <title></title> <meta charset "utf-8"> <style type"text/css">#box1 {width: 100px;h…...

pytest测试框架之http协议接口测试
1 接口测试 日常测试中接口测试是一项重要的工作,尤其是http协议的接口测试更加普遍,比如一些常用的测试框架或者工具(robotframework框架,testng框架,postman等)都支持http接口的测试,而这节内容主要介绍…...

FFmpeg源码:av_gcd函数分析
一、引言 公约数,是一个能同时整除几个整数的数。如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;公约数中最大的称为最大公约数。对任意的若干个正整数,1总是它们的公约数。 公约数与公倍数相反,就…...

springboot物流寄查系统-计算机毕业设计源码95192
目 录 1 绪论 1.1 研究背景 1.2选题背景 1.3论文结构与章节安排 2 springboot物流寄查系统系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 法律可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.2.2 非功能性分析 2.3 系统用例分析 2…...

【秋招笔试】24-07-27-OPPO-秋招笔试题(算法岗)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 编程一对一辅导 ✨ 本系列打算持续跟新 秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 💡 第一题贪心模拟…...

AUTOSAR实战教程 - 模式管理BswM与其他各模块的交互
近日驻厂某OEM,幸得大块的个人时间, 把BswM这一块的内容从ETAS/ISOLAR工具配置到代码实现做了一个全方位的CT. 2024,希望孜孜内卷的汽车人升职加薪! 博主近期写的一首小诗,也一并送给大家,懂的都懂: 在看不到阳光的冬天/ 我染了风寒/ 白天点灯/ 晚上吃药/ 躺在被窝里才敢…...

经典非比较排序—计数排序的Java实现方式
目录 1.具体思路: 2.代码实现: 3.代码分析 4.示例测试: 测试源码: 测试结果: 计数排序,又被称为鸽巢原理,属于桶排序的一种,其本质是通过哈希映射思想,设定计数数组输入以…...

【C++从小白到大牛】栈和队列(优先级队列)
目录 引言: 使用方法篇: stack: queue priority_queue 使用方法: 模拟实现篇: stack: 原码: queue 原码: priority_queue 插入和删除数据的思想: 仿函数实…...

Golang之OpenGL(一)
使用OpenGL实现窗口中绘制三角形(纯色|彩色)、正方形(变色) 一、简单实现窗口绘制三角形二、绘制的多颜色三角形(基于 ‘ 简单实现窗口绘制三角形 ’ )1、在顶点着色器和片段着色器中添加了颜色的输入和输出…...
122. Go反射中与结构体相关的常用方法与应用
文章目录 encoding/jsonreflect 简介reflect.Value 常用方法reflect.Type 常用方法 应用一:使用 reflect 实现 encoding/json序列化反序列化 应用二:使用Tag实现字段级别的访问控制tag 行为自定义案例:结构体字段访问控制 总结 在使用 Go 语言…...

Java入门、进阶、强化、扩展、知识体系完善等知识点学习、性能优化、源码分析专栏分享
场景 作为一名Java开发者,势必经历过从入门到自学、从基础到进阶、从学习到强化的过程。 当经历过几年企业级开发的磨炼,再回头看之前的开发过程、成长阶段发现确实是走了好多的弯路。 作为一名终身学习的信奉者,秉承Java体系需持续学习、…...
Spring-bean销毁
bean销毁(找到销毁的bean) 在bean的声明周期中,存在一个记录bean销毁方法的阶段,以备于spring关闭的时候可以执行bean的销毁方法(单例bean) v1.0 registerDisposableBeanIfNecessary protected void registerDisposableBeanIfNec…...
【4】BlazorUI库
【4】BlazorUI库 一、Blazorise二、Ant Design Blazor三、Radzen Blazo四、Radzen Blazo 一、Blazorise Blazorise Blazorise 是一个广泛使用的 UI 框架,提供了丰富的组件库和多个主题支持,如 Bootstrap、Bulma、Material 和 AntDesign。 二、Ant Desig…...

树与二叉树【下】
目录 三. 哈夫曼树3.1 带权路径长度3.2 哈夫曼树的定义3.3 哈夫曼树的构造3.4 哈夫曼编码(经常考察) 四. 并查集4.1 如何表示“集合”关系?4.2 “并查集”的代码实现4.3 “并查集”的优化4.4 “并查集”的进一步优化 \quad 三. 哈夫曼树 \qua…...

ElementPlus 中el-select自定义指令实现触底加载请求options数据
1) 背景: 老项目翻新时,发现一个下拉框数据非常多,客户呢,希望全部数据一起展示,意思就是全部数据一起返回给前端用于展示。但这会造成明显的卡顿。~~明显的不合理! QAQ!~~ 于是压力给到前端,查询资料,各种…...

基于Selenium实现操作网页及操作windows桌面应用
Selenium操作Web页面 Why? 通常情况下,网络安全相关领域,更多是偏重于协议和通信。但是,如果协议通信过程被加密或者无法了解其协议构成,是无法直接通过协议进行处理。此时,可以考虑模拟UI操作,进而实现相…...
科普文:linux系列之操作系统内存管理简介
概叙 操作系统内存管理是计算机系统中的核心技术之一,页式管理、段式管理和段页式管理各有优缺点。页式管理通过固定大小的页框减少了外部碎片,但可能导致内部碎片;段式管理符合程序逻辑,提供了灵活的内存保护,但可能…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...