当前位置: 首页 > news >正文

浅学爬虫-爬虫维护与优化

在实际项目中,爬虫的稳定性和效率至关重要。通过错误处理与重试机制、定时任务以及性能优化,可以确保爬虫的高效稳定运行。下面我们详细介绍这些方面的技巧和方法。

错误处理与重试机制

在爬虫运行过程中,网络不稳定、目标网站变化等因素可能会导致请求失败。为了确保爬虫的健壮性,需要实现错误处理与重试机制。

示例:实现错误处理与重试机制

我们将修改之前的新闻爬虫示例,加入错误处理与重试机制。

import requests
from bs4 import BeautifulSoup
import csv
import time# 文章列表页URL模板
base_url = "http://news.example.com/page/"
max_retries = 3  # 最大重试次数# 爬取文章详情的函数
def fetch_article(url):for attempt in range(max_retries):try:response = requests.get(url)response.raise_for_status()soup = BeautifulSoup(response.content, 'html.parser')title = soup.find('h1', class_='article-title').textauthor = soup.find('span', class_='article-author').textdate = soup.find('span', class_='article-date').textcontent = soup.find('div', class_='article-content').textreturn {'title': title,'author': author,'date': date,'content': content}except requests.exceptions.RequestException as e:print(f"请求失败: {e},重试 {attempt + 1} 次...")time.sleep(2 ** attempt)  # 指数退避算法return None# 爬取文章列表页的函数
def fetch_articles_from_page(page):url = f"{base_url}{page}"for attempt in range(max_retries):try:response = requests.get(url)response.raise_for_status()articles = []soup = BeautifulSoup(response.content, 'html.parser')links = soup.find_all('a', class_='article-link')for link in links:article_url = link['href']article = fetch_article(article_url)if article:articles.append(article)return articlesexcept requests.exceptions.RequestException as e:print(f"请求失败: {e},重试 {attempt + 1} 次...")time.sleep(2 ** attempt)  # 指数退避算法return []# 保存数据到CSV文件
def save_to_csv(articles, filename):with open(filename, 'w', newline='', encoding='utf-8') as csvfile:fieldnames = ['title', 'author', 'date', 'content']writer = csv.DictWriter(csvfile, fieldnames=fieldnames)writer.writeheader()for article in articles:writer.writerow(article)# 主程序
if __name__ == "__main__":all_articles = []for page in range(1, 6):  # 假设要爬取前5页articles = fetch_articles_from_page(page)all_articles.extend(articles)save_to_csv(all_articles, 'news_articles.csv')print("新闻数据已保存到 news_articles.csv")

代码解释:

  1. 错误处理: 使用try-except块捕获请求异常,并打印错误信息。
  2. 重试机制: 使用for循环和指数退避算法(time.sleep(2 ** attempt))实现重试机制。
定时任务

为了定期运行爬虫,可以使用系统的定时任务工具,如Linux的cron或Windows的任务计划程序。这里以cron为例,介绍如何定期运行爬虫。

步骤1:编写爬虫脚本

假设我们已经编写好了一个爬虫脚本news_spider.py

步骤2:配置cron任务

打开终端,输入crontab -e编辑定时任务。添加以下内容,每天凌晨2点运行爬虫脚本:

0 2 * * * /usr/bin/python3 /path/to/news_spider.py

代码解释:

  1. 定时配置: 0 2 * * *表示每天凌晨2点运行。
  2. 运行脚本: 指定Python解释器和爬虫脚本的路径。
性能优化

为了提高爬虫的性能和效率,可以采用以下优化策略:

  1. 并发和多线程: 使用多线程或异步编程加速爬取速度。
  2. 减少重复请求: 使用缓存或数据库存储已爬取的URL,避免重复请求。
  3. 优化解析速度: 使用更高效的HTML解析库,如lxml

示例:使用多线程优化爬虫

import concurrent.futures
import requests
from bs4 import BeautifulSoup
import csv# 文章列表页URL模板
base_url = "http://news.example.com/page/"
max_workers = 5  # 最大线程数# 爬取文章详情的函数
def fetch_article(url):try:response = requests.get(url)response.raise_for_status()soup = BeautifulSoup(response.content, 'html.parser')title = soup.find('h1', class_='article-title').textauthor = soup.find('span', class_='article-author').textdate = soup.find('span', class_='article-date').textcontent = soup.find('div', class_='article-content').textreturn {'title': title,'author': author,'date': date,'content': content}except requests.exceptions.RequestException as e:print(f"请求失败: {e}")return None# 爬取文章列表页的函数
def fetch_articles_from_page(page):url = f"{base_url}{page}"try:response = requests.get(url)response.raise_for_status()soup = BeautifulSoup(response.content, 'html.parser')links = soup.find_all('a', class_='article-link')article_urls = [link['href'] for link in links]return article_urlsexcept requests.exceptions.RequestException as e:print(f"请求失败: {e}")return []# 主程序
if __name__ == "__main__":all_articles = []with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:# 爬取前5页的文章URLarticle_urls = []for page in range(1, 6):article_urls.extend(fetch_articles_from_page(page))# 并发爬取文章详情future_to_url = {executor.submit(fetch_article, url): url for url in article_urls}for future in concurrent.futures.as_completed(future_to_url):article = future.result()if article:all_articles.append(article)# 保存数据到CSV文件save_to_csv(all_articles, 'news_articles.csv')print("新闻数据已保存到 news_articles.csv")

代码解释:

  1. 并发爬取文章详情: 使用concurrent.futures.ThreadPoolExecutor实现多线程并发爬取文章详情。
  2. 优化爬取速度: 使用多线程提高爬取速度。
结论

通过错误处理与重试机制、定时任务和性能优化,可以显著提高爬虫的稳定性和效率。本文详细介绍了这些维护与优化技术,帮助我们编写高效稳定的爬虫程序。

相关文章:

浅学爬虫-爬虫维护与优化

在实际项目中,爬虫的稳定性和效率至关重要。通过错误处理与重试机制、定时任务以及性能优化,可以确保爬虫的高效稳定运行。下面我们详细介绍这些方面的技巧和方法。 错误处理与重试机制 在爬虫运行过程中,网络不稳定、目标网站变化等因素可…...

STM32G070系列芯片擦除、写入Flash错误解决

在用G070KBT6芯片调用HAL_FLASHEx_Erase(&EraseInitStruct, &PageError)时,调试发现该函数返回HAL_ERROR,最后定位到FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE)函数出现错误,pFlash.ErrorCode为0xA0,即FLASH错误标…...

08.02_111期_Linux_NAT技术

NAT(network address translation)技术说明 IP报文在转发的时候需要考虑 源IP地址 和 目的IP地址, IP报文每到达一个节点,就会更改一次IP地址和目的IP地址,其中节点是指主机、服务器、路由器 那么这个更改是如何进行的呢? 除了…...

【2024蓝桥杯/C++/B组/小球反弹】

题目 分析 Sx 2 * k1 * x; Sy 2 * k2 * y; (其中k1, k2为整数) Vx * t Sx; Vy * t Sy; k1 / k2 (15 * y) / (17 * x); 目标1:根据k1与k2的关系,找出一组最小整数组(k1, k2)&#xff…...

PHP中如何实现函数的可变参数列表

在PHP中,实现函数的可变参数列表主要有两种方式:使用func_get_args()函数和使用可变数量的参数(通过...操作符,自PHP 5.6.0起引入)。 1. 使用func_get_args()函数 func_get_args()函数用于获取传递给函数的参数列表&…...

串---链串实现

链串详解 本文档将详细介绍链串的基本概念、实现原理及其在 C 语言中的具体应用。通过本指南,读者将了解如何使用链串进行各种字符串操作。 1. 什么是链串? 链串是一种用于存储字符串的数据结构,它使用一组动态分配的节点来保存字符串中的…...

科技赋能生活——便携气象站

传统气象站往往庞大而复杂,需要专业人员维护,它小巧玲珑,设计精致,可以轻松放入背包或口袋,随身携带,不占空间。无论是城市白领穿梭于高楼大厦间,还是户外爱好者深入山林湖海,都能随…...

Golang——GC原理

1.垃圾回收的目的 将未被引用到的对象销毁,回收其所占的内存空间。 2.根对象是什么 全局变量:在编译器就能确定的存在于程序整个生命周期的变量。 执行栈:每个goroutine都包含自己的执行栈,这些执行栈上包含栈上的变量及指向分配…...

OpenStack概述

一、初识OpenStack OpenStack Docs: 概况 一)OpenStack架构简述 1、理解OpenStack OpenStack既是一个社区,也是一个项目和一个开源软件,提供开放源码软件,建立公共和私有云,它提供了一个部署云的操作平台或工具集&…...

机器学习练手(三):基于决策树的iris 多分类和波士顿房价预测

总结:本文为和鲸python 可视化探索训练营资料整理而来,加入了自己的理解(by GPT4o) 原活动链接 原作者:vgbhfive,多年风控引擎研发及金融模型开发经验,现任某公司风控研发工程师,对…...

PS 2024 百种常用插件下载安装教程【免费使用,先到先得】

文章目录 软件介绍软件下载安装步骤 专栏推荐: 超多精品软件(持续更新中…) 软件推荐: PS 2024 PR 2024 软件介绍 PS常用插件 此软件整合了市面近百款ps处理插件,可实现:一键制作背景,一键抠图…...

逻辑推理之lora微调

逻辑推理微调 比赛介绍准备内容lora微调lora微调介绍lora优势代码内容 start_vllm相关介绍调用 运行主函数提交结果总结相应连接 比赛介绍 本比赛旨在测试参与者的逻辑推理和问题解决能力。参与者将面对一系列复杂的逻辑谜题,涵盖多个领域的推理挑战。 比赛的连接:…...

前端-防抖代码

//防抖debounce(fn, time 1000) {let timer null;return function (...args) {if (timer) clearTimeout(timer);timer setTimeout(() > {fn.apply(this, args);}, time);};},// 输入变化处理函数async inputChange(value) {if (!this.debouncedInputChange) {this.deboun…...

langchain 入门指南 - 让 LLM 自动选择不同的 Prompt

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 让 LLM 自动选择不同的 Prompt 在上一篇文章中,我们学会了如何让 langchain 来自动选择不同的 LLM Chain,以便回…...

web浏览器播放rtsp视频流,海康监控API

概述 这里记录一下如何让前端播放rtsp协议的视频流 ​ 项目中调用海康API,生成的视频流(hls、ws、rtmp等)通过PotPlayer播放器都无法播放,说明视频流有问题,唯独rtsp视频流可以播放。 但是浏览器本身是无法播放rtsp视频的,即使…...

操作系统原理:程序、进程、线程的概念

文章目录 程序、进程、线程的概念程序(Program)进程(Process)线程(Thread)关系总结 在日常对操作系统的使用中,大家肯定对程序、进程和线程多少有所耳闻。作为操作系统的重要一部分,…...

Golang是如何实现动态数组功能的?Slice切片原理解析

Hi 亲爱的朋友们,我是 k 哥。今天,咱们聊一聊Golang 切片。 当我们需要使用数组,但是又不能提前定义数组大小时,可以使用golang的动态数组结构,slice切片。在 Go 语言的众多特性里,slice 是我们经常用到的数…...

SQL注入 报错注入+附加拓展知识,一篇文章带你轻松入门

第5关--------------------------------------------> 前端直接不会显示账号密码的打印;但是在接收前端的数据的那部分后端那里,会看前端传递过来的值是否正确,如果不正确,后端接收值那里就会当MySQL语句执行错误,…...

springboot项目里的包spring-boot-dependencies依赖介绍

springboot项目里的包’spring-boot-dependencies‘依赖 我们一般是在项目的pom dependencyManagement标签里引入spring-boot-dependencies,或者根spring-boot-starter-parent里也是继承了它,也正是因为继承了这个依赖,所以我们在写依赖时才不需要写版本…...

C# 下的限定符运算详解(全部,任意,包含)与示例

文章目录 1.限定符概述2. 全部限定符运算(All)3. 任意限定符运算(Any)4. 包含限定符运算(Contains)总结 当我们在C#编程中需要进行条件判断或集合操作时,限定符(qualifiers&#xff…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦&#xff0…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

沙箱虚拟化技术虚拟机容器之间的关系详解

问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...