当前位置: 首页 > news >正文

[Day 45] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

區塊鏈的可擴展性挑戰

概述

區塊鏈技術在過去幾年中取得了顯著的進展,其去中心化、透明和安全的特性使其在金融、供應鏈管理、醫療等領域得到了廣泛應用。然而,區塊鏈技術的一個重大挑戰是其可擴展性。可擴展性是指系統能夠有效處理日益增長的數據和用戶需求的能力。本文將深入探討區塊鏈可擴展性的挑戰,並提供代碼示例以幫助讀者更好地理解這些概念。

一、區塊鏈的可擴展性問題

1. 區塊容量限制

在區塊鏈中,每個區塊都有一個固定的容量限制。例如,比特幣的區塊大小限制為1MB。這意味著每個區塊只能包含一定數量的交易記錄,導致交易處理速度受到限制。

2. 交易速度限制

比特幣和以太坊等區塊鏈的交易確認速度相對較慢。比特幣的平均交易確認時間為10分鐘,而以太坊的確認時間為15秒左右。這使得在高交易量情況下,交易處理速度難以滿足需求。

3. 節點同步問題

區塊鏈網絡中的每個節點都需要存儲整個區塊鏈的副本,並與其他節點同步。在區塊鏈規模增長的情況下,節點同步會變得更加困難,導致網絡性能下降。

二、當前的解決方案及其限制

1. 區塊大小擴展

擴大區塊大小是提高區塊鏈可擴展性的一種方法。例如,比特幣的SegWit和Bitcoin Cash分叉都通過擴大區塊大小來提高交易處理能力。然而,這種方法會增加節點的存儲和帶寬需求,可能導致中心化問題。

2. 閃電網絡

閃電網絡是一種基於支付通道的技術,可以實現即時且低成本的交易。通過在區塊鏈上建立雙向支付通道,雙方可以進行多次交易,僅在通道關閉時才將最終結果記錄到區塊鏈上。這大大減少了主鏈上的交易數量。然而,閃電網絡的實施和管理相對複雜,且不適用於所有類型的交易。

class PaymentChannel:def __init__(self, balance_a, balance_b):self.balance_a = balance_aself.balance_b = balance_bdef transact(self, amount, from_a_to_b=True):if from_a_to_b:if self.balance_a >= amount:self.balance_a -= amountself.balance_b += amountreturn Trueelse:return Falseelse:if self.balance_b >= amount:self.balance_b -= amountself.balance_a += amountreturn Trueelse:return Falsechannel = PaymentChannel(100, 50)
print(channel.transact(10))  # A to B
print(channel.balance_a, channel.balance_b)

在上述代碼中,我們定義了一個簡單的支付通道類,其中包含兩個用戶的餘額和一個進行交易的方法。此方法允許在雙方之間進行交易,並更新相應的餘額。

3. 分片技術

分片技術是一種將區塊鏈數據和交易處理分割到多個子鏈上的方法,每個子鏈負責處理一部分交易。這樣可以大幅提高整個網絡的交易處理能力。然而,分片技術的實施非常複雜,並且需要解決跨片交易和安全性問題。

class Shard:def __init__(self, shard_id):self.shard_id = shard_idself.transactions = []def add_transaction(self, transaction):self.transactions.append(transaction)class ShardedBlockchain:def __init__(self, num_shards):self.shards = [Shard(i) for i in range(num_shards)]def add_transaction(self, transaction, shard_id):self.shards[shard_id].add_transaction(transaction)sharded_blockchain = ShardedBlockchain(3)
sharded_blockchain.add_transaction("tx1", 0)
sharded_blockchain.add_transaction("tx2", 1)
sharded_blockchain.add_transaction("tx3", 2)
for shard in sharded_blockchain.shards:print(f"Shard {shard.shard_id}: {shard.transactions}")

上述代碼示例展示了一個簡單的分片區塊鏈系統,每個分片負責處理一部分交易。這種方法可以提高區塊鏈的可擴展性,但需要進一步解決跨片交易的問題。

三、區塊鏈可擴展性的未來方向

1. Layer 2 解決方案

Layer 2 解決方案旨在通過在主鏈之外處理交易來提高區塊鏈的可擴展性。這些解決方案包括閃電網絡、Plasma 和 Rollup 等。它們可以顯著提高交易速度和降低成本,但需要平衡安全性和效率。

2. 優化共識機制

目前主流的共識機制如 PoW(工作量證明)和 PoS(權益證明)都存在一定的可擴展性限制。新的共識機制如 DPoS(委託權益證明)、PBFT(實用拜占庭容錯)等,有望提高區塊鏈的交易處理能力。

3. 資源高效的存儲方案

隨著區塊鏈規模的增長,存儲需求也在不斷增加。新型的存儲方案如 IPFS(星際文件系統)、分布式哈希表(DHT)等,可以幫助減少節點的存儲負擔,提高網絡的可擴展性。

結論

區塊鏈的可擴展性挑戰是一個複雜且多層次的問題。雖然目前已有多種解決方案,但仍存在諸多限制。未來,隨著技術的進一步發展和創新,相信區塊鏈的可擴展性問題將逐步得到解決,並實現更加廣泛的應用。

相关文章:

[Day 45] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

區塊鏈的可擴展性挑戰 概述 區塊鏈技術在過去幾年中取得了顯著的進展,其去中心化、透明和安全的特性使其在金融、供應鏈管理、醫療等領域得到了廣泛應用。然而,區塊鏈技術的一個重大挑戰是其可擴展性。可擴展性是指系統能夠有效處理日益增長的數據和用…...

白骑士的PyCharm教学实战项目篇 4.3 自动化测试与持续集成

系列目录 上一篇: 在现代软件开发过程中,自动化测试与持续集成(CI)是确保代码质量和快速交付的关键环节。PyCharm作为一款强大的集成开发环境(IDE),为自动化测试和持续集成提供了全面的支持。本…...

权限模块开发+权限与角色关联(完整CRUD)

文章目录 🌞 Sun Frame:SpringBoot 的轻量级开发框架(个人开源项目推荐)🌟 亮点功能📦 spring cloud模块概览常用工具 🔗 更多信息1.easycode生成代码1.配置2.AuthPermissionDao.java剪切到mapp…...

llama神经网络的结构,llama-3-8b.layers=32 llama-3-70b.layers=80; 2000汉字举例说明

目录 llama-3-8b.layers=32 llama-3-70b.layers=80 llama神经网络的结构 Llama神经网络结构示例 示例中的输入输出大小 实际举例说明2000个汉字文本数据集 初始化词嵌入矩阵 1. 输入层 2. 嵌入层 3. 卷积层 4. 全连接层 llama-3-8b.layers=32 llama-3-70b.laye…...

单细胞数据怎么表现genes mRNA表达的热图?

愿武艺晴小朋友一定得每天都开心 #热图 library("ComplexHeatmap") exp <- AverageExpression(subset(fasting_memory, Celltype %in% c("Pre-B")), layer = "data", #即CPM值 features …...

Java聚合快递对接云洋系统小程序源码

&#x1f680;【物流新纪元】聚合快递如何无缝对接云洋系统&#xff0c;效率飙升秘籍大公开&#xff01;✨ &#x1f50d; 开篇揭秘&#xff1a;聚合快递的魅力所在 Hey小伙伴们&#xff0c;你是否还在为多家快递公司账号管理繁琐、订单处理效率低下而头疼&#xff1f;&#…...

MySQL——数据表的基本操作(三)修改数据表

有时候&#xff0c;希望对表中的某些信息进行修改&#xff0c;这时就需要修改数据表。所谓修改数据表指的是修改数据库中已经存在的数据表结构&#xff0c;比如&#xff0c;修改表名、修改字段名、修改字段的数据类型等。在 MySQL中&#xff0c;修改数据表的操作都是使用 ALTER…...

医学图像分割的基准:TransUnet(用于医学图像分割的Transformer编码器)器官分割

1、 TransUnet 介绍 TransUnet是一种用于医学图像分割的深度学习模型。它是基于Transformer模型的图像分割方法&#xff0c;由AI研究公司Hugging Face在2021年提出。 医学图像分割是一项重要的任务&#xff0c;旨在将医学图像中的不同结构和区域分离出来&#xff0c;以便医生可…...

java-swing编写学生成绩查询管理系统

本文是本人大二上实训项目-学生成绩查询管理系统&#xff0c;采用本项目使用Java、MySQL技术。界面框架由Java Swing搭建&#xff0c;用JDBC实现Java与MySQL的连接。 本项目适合初学java和mysql的同学&#xff0c;来做一些小项目来提升自己&#xff0c;因为兴趣所以想要做去尝…...

volatile浅解

volatile修饰的变量有两个特点 线程中修改了自己工作内存中的副本后&#xff0c;立即将其刷新到主内存工作内存中每次读取共享变量时&#xff0c;都会去主内存中重新读取&#xff0c;然后拷贝到工作内存 内存 -> CPU Cache -> CPU 如果没有volatile那么就会继续读取缓存…...

世媒讯带您了解什么是媒体邀约

什么是媒体邀约&#xff1f;其实媒体邀约是一种公关策略&#xff0c;旨在通过邀请媒体记者和编辑参加特定的活动、发布会或其他重要事件&#xff0c;以确保这些活动能够得到广泛的报道和关注。通过这种方式&#xff0c;企业和组织希望能够传达重要信息&#xff0c;提高品牌知名…...

[Kimi 笔记]“面向搜索引擎”

"面向搜索引擎"&#xff08;Search Engine-Oriented&#xff0c;SEO-Oriented 或 SEO-Friendly&#xff09;通常指的是在设计和开发网站时&#xff0c;采取一系列措施来优化网站内容和结构&#xff0c;以便提高网站在搜索引擎结果页面&#xff08;SERP&#xff09;中…...

如何在亚马逊云科技AWS上利用LoRA高效微调AI大模型减少预测偏差

简介&#xff1a; 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案&#xff0c;帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践&#xff0c;并应用到自己的日常工作里。 在机器学习和人工智能领域&#xff0c;生成偏差…...

订单定时状态处理业务(SpringTask)

文章目录 概要整体架构流程技术细节小结 概要 订单定时状态处理通常涉及到对订单状态进行定期检查&#xff0c;并根据订单的状态自动执行某些操作&#xff0c;比如关闭未支付的订单、自动确认收货等. 需求分析以及接口设计 需求分析 用户下单后可能存在的情况&#xff1a; …...

STM32 | ADC+RS485(第十天)

点击上方"蓝字"关注我们 01、ADC概述 ADC, Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器。是指将连续变量的模拟信号转换为离散的数字信号的器件。真实世界的模拟信号.例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的…...

python打包成能够在mac里面运行的程序

要将你的PyQt5应用程序打包成可以在macOS上运行的独立应用程序&#xff0c;可以使用工具如PyInstaller或py2app。下面是使用py2app的详细步骤&#xff0c;因为它是macOS上专用的打包工具&#xff0c;并且更好地支持PyQt5。 1. 安装py2app 首先&#xff0c;确保你的macOS系统上…...

基于FPGA的数字信号处理(20)--半减器和全减器

目录 1、前言 2、半减器 3、全减器 4、减法器 文章总目录点这里&#xff1a;《基于FPGA的数字信号处理》专栏的导航与说明 1、前言 既然有半加器和全加器&#xff0c;那自然也有半减器和全减器了。尽管在电路中减法的实现基本都是 补码 加法 的形式&#xff0c;但是正所谓…...

Python:单引号,双引号,三引号的区别

在Python中&#xff0c;单引号&#xff08;&#xff09;、双引号&#xff08;"&#xff09;和三引号&#xff08; 或 """&#xff09;都可以用来定义字符串&#xff0c;但它们之间有一些区别&#xff1a; 单引号&#xff08;&#xff09;和双引号&#xf…...

电子电气架构 ---SOMEIP/SD初入门

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…...

一些数学基础概念

一些数学基础概念 概率密度函数(PDF) 概率密度函数&#xff08;Probability Density Function&#xff0c;简称 PDF&#xff09;是描述连续随机变量的概率分布的一种函数。它用来表示随机变量在各个取值区间内的概率密度。 1. 定义 对于一个连续随机变量 ( X )&#xff0c;…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...