用C跑爬虫
爬虫自指定的URL地址开始下载网络资源,直到该地址和所有子地址的指定资源都下载完毕为止。
下面开始逐步分析爬虫的实现。
- 待下载集合与已下载集合
为了保存需要下载的URL,同时防止重复下载,我们需要分别用了两个集合来存放将要下载的URL和已经下载的URL。
因为在保存URL的同时需要保存与URL相关的一些其他信息,如深度,所以这里我采用了Dictionary来存放这些URL。
具体类型是Dictionary<string, int> 其中string是Url字符串,int是该Url相对于基URL的深度。
每次开始时都检查未下载的集合,如果已经为空,说明已经下载完毕;如果还有URL,那么就取出第一个URL加入到已下载的集合中,并且下载这个URL的资源。
- HTTP请求和响应
C#已经有封装好的HTTP请求和响应的类HttpWebRequest和HttpWebResponse,所以实现起来方便不少。
为了提高下载的效率,我们可以用多个请求并发的方式同时下载多个URL的资源,一种简单的做法是采用异步请求的方法。
控制并发的数量可以用如下方法实现
private void DispatchWork()
{if (_stop) //判断是否中止下载{return;}for (int i = 0; i < _reqCount; i++){if (!_reqsBusy[i]) //判断此编号的工作实例是否空闲{RequestResource(i); //让此工作实例请求资源}}
}
由于没有显式开新线程,所以用一个工作实例来表示一个逻辑工作线程
private bool[] _reqsBusy = null; //每个元素代表一个工作实例是否正在工作
private int _reqCount = 4; //工作实例的数量
每次一个工作实例完成工作,相应的_reqsBusy就设为false,并调用DispatchWork,那么DispatchWork就能给空闲的实例分配新任务了。
接下来是发送请求 每次一个工作实例完成工作,相应的_reqsBusy就设为false,并调用DispatchWork,那么DispatchWork就能给空闲的实例分配新任务了。
接下来是发送请求
private void RequestResource(int index){int depth;string url = "";try{lock (_locker){if (_urlsUnload.Count <= 0) //判断是否还有未下载的URL{_workingSignals.FinishWorking(index); //设置工作实例的状态为Finishedreturn;}_reqsBusy[index] = true;_workingSignals.StartWorking(index); //设置工作状态为Workingdepth = _urlsUnload.First().Value; //取出第一个未下载的URLurl = _urlsUnload.First().Key;_urlsLoaded.Add(url, depth); //把该URL加入到已下载里_urlsUnload.Remove(url); //把该URL从未下载中移除}HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);req.Method = _method; //请求方法req.Accept = _accept; //接受的内容req.UserAgent = _userAgent; //用户代理RequestState rs = new RequestState(req, url, depth, index); //回调方法的参数var result = req.BeginGetResponse(new AsyncCallback(ReceivedResource), rs); //异步请求ThreadPool.RegisterWaitForSingleObject(result.AsyncWaitHandle, //注册超时处理方法TimeoutCallback, rs, _maxTime, true);}catch (WebException we){MessageBox.Show("RequestResource " + we.Message + url + we.Status);}}
private void RequestResource(int index){int depth;string url = "";try{lock (_locker){if (_urlsUnload.Count <= 0) //判断是否还有未下载的URL{_workingSignals.FinishWorking(index); //设置工作实例的状态为Finishedreturn;}_reqsBusy[index] = true;_workingSignals.StartWorking(index); //设置工作状态为Workingdepth = _urlsUnload.First().Value; //取出第一个未下载的URLurl = _urlsUnload.First().Key;_urlsLoaded.Add(url, depth); //把该URL加入到已下载里_urlsUnload.Remove(url); //把该URL从未下载中移除}HttpWebRequest req = (HttpWebRequest)WebRequest.Create(url);req.Method = _method; //请求方法req.Accept = _accept; //接受的内容req.UserAgent = _userAgent; //用户代理RequestState rs = new RequestState(req, url, depth, index); //回调方法的参数var result = req.BeginGetResponse(new AsyncCallback(ReceivedResource), rs); //异步请求ThreadPool.RegisterWaitForSingleObject(result.AsyncWaitHandle, //注册超时处理方法TimeoutCallback, rs, _maxTime, true);}catch (WebException we){MessageBox.Show("RequestResource " + we.Message + url + we.Status);}}
第7行为了保证多个任务并发时的同步,加上了互斥锁。_locker是一个Object类型的成员变量。
第9行判断未下载集合是否为空,如果为空就把当前工作实例状态设为Finished;如果非空则设为Working并取出一个URL开始下载。当所有工作实例都为Finished的时候,说明下载已经完成。由于每次下载完一个URL后都调用DispatchWork,所以可能激活其他的Finished工作实例重新开始工作。
第26行的请求的额外信息在异步请求的回调方法作为参数传入,之后还会提到。
第27行开始异步请求,这里需要传入一个回调方法作为响应请求时的处理,同时传入回调方法的参数。
第28行给该异步请求注册一个超时处理方法TimeoutCallback,最大等待时间是_maxTime,且只处理一次超时,并传入请求的额外信息作为回调方法的参数。
RequestState的定义是
class RequestState
{private const int BUFFER_SIZE = 131072; //接收数据包的空间大小private byte[] _data = new byte[BUFFER_SIZE]; //接收数据包的bufferprivate StringBuilder _sb = new StringBuilder(); //存放所有接收到的字符public HttpWebRequest Req { get; private set; } //请求public string Url { get; private set; } //请求的URLpublic int Depth { get; private set; } //此次请求的相对深度public int Index { get; private set; } //工作实例的编号public Stream ResStream { get; set; } //接收数据流public StringBuilder Html{get{return _sb;}}public byte[] Data{get{return _data;}}public int BufferSize{get{return BUFFER_SIZE;}}public RequestState(HttpWebRequest req, string url, int depth, int index){Req = req;Url = url;Depth = depth;Index = index;}
}
相关文章:
用C跑爬虫
爬虫自指定的URL地址开始下载网络资源,直到该地址和所有子地址的指定资源都下载完毕为止。 下面开始逐步分析爬虫的实现。 待下载集合与已下载集合 为了保存需要下载的URL,同时防止重复下载,我们需要分别用了两个集合来存放将要下载的URL和…...
【C语言】你真的了解结构体吗
引言✨我们知道C语言中存在着整形(int、short...),字符型(char),浮点型(float、double)等等内置类型,但是有时候,这些内置类型并不能解决我们的需求,因为我们无法用这些单一的内置类型来描述一些复杂的对象,…...
血氧仪是如何得出血氧饱和度值的?
目录 一、血氧饱和度概念 二、血氧饱和度监测意义 三、血氧饱和度的监测方式 四、容积脉搏波计算血氧饱和度原理 五、容积脉搏波波形的测量电路方案 1)光源和光电探测器的集成测量模块:SFH7050—反射式 2)模拟前端 六、市面上血氧仪类型…...
Java全栈知识(3)接口和抽象类
1、抽象类 抽象类就是由abstract修饰的类,其中没有只声明没有实现的方法就是抽象方法,抽象类中可以有0个或者多个抽象方法。 1.1、抽象类的语法 抽象类不能被final修饰 因为抽象类是一种类似于工程中未完成的中间件。需要有子类进行继承完善其功能,所…...
JavaScript == === Object.is()
文章目录JavaScript & & Object.is() 相等运算符 全等运算符Object.is() 值比较JavaScript & & Object.is() 相等运算符 相等运算符,会先进行类型转换,将2个操作数转为相同的类型,再比较2个值。 console.log("10&…...
GPT4论文翻译 by GPT4 and Human
GPT-4技术报告解读 文章目录GPT-4技术报告解读前言:摘要1 引言2 技术报告的范围和局限性3 可预测的扩展性3.1 损失预测3.2 人类评估能力的扩展4 能力评估4.1 视觉输入 !!!5 限制6 风险与缓解:7 结论前言: 这篇报告内容太多了!&am…...
inode和软硬链接
文章目录:一、理解文件系统1.1 什么是inode1.2 磁盘了解1.2.1磁盘的硬件结构1.2.2 磁盘的分区1.2.3 EXT2文件系统二、软硬链接2.1 软链接2.2 硬链接一、理解文件系统 1.1 什么是inode inodes 是文件系统中存储文件元数据的数据结构。每个文件或目录都有一个唯一的 …...
简单分析Linux内核基础篇——initcall
写过Linux驱动的人都知道module_init宏,因为它声明了一个驱动的入口函数。 除了module_init宏,你会发现在Linux内核中有许多的驱动并没有使用module_init宏来声明入口函数,而是看到了许多诸如以下的声明: static int __init qco…...
硬件速攻-AT24CXX存储器
AT24C02是什么? AT24CXX是存储芯片,驱动方式为IIC协议 实物图? 引脚介绍? A0 地址设置角 可连接高电平或低电平 A1 地址设置角 可连接高电平或低电平 A2 地址设置角 可连接高电平或低电平 1010是设备前四位固定地址 …...
C# tuple元组详解
概念 本质就是个数据结构,它是将多个数据元素分组成一个轻型数据结构。 如何声明元组变量(针对.net framework 4.7 和 .net core 2.0) 不带字段名称元组 ## t1就是个变量 它的类型是元组类型 ## 左侧括号定义的是参数列表 等于号右侧就是个t1赋值 #…...
1、Linux初级——linux命令
下载镜像:http://cn.ubuntu.com/dowload 一、基本命令 1、alias(给命令取别名) 例如:alias clls -la(只是临时的) 2、配置文件$ vim ~/.bashrc $ vim ~/.bashrc // 使用vim打开配置文件 (1)在配置文件…...
ChatGPT助力校招----面试问题分享(四)
1 ChatGPT每日一题:电阻如何选型 问题:电阻如何选型 ChatGPT:电阻的选型通常需要考虑以下几个方面: 额定功率:电阻的额定功率是指电阻能够承受的最大功率。在选型时,需要根据电路中所需要的功率确定所选…...
【设计模式】创建型设计模式
文章目录1. 基础①如何学习设计模式② 类模型③ 类关系2. 设计原则3. 模板方法① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码4. 观察者模式① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码5. 策略模式① 定义②背景③ 要点④ 本质⑤ 结构图⑥ 样例代码1. 基础 ①如何学习…...
Linux 信号(signal):信号的理解
目录一、理解信号1.信号是什么2.信号的种类二、简单理解信号的生命周期一、理解信号 1.信号是什么 Linux中的信号其实和日常生活中的信号还是挺像的,LInux中的信号是一种事件通知机制,通知进程发生了某个事件。进程接收到信号后,就会中断当前…...
Vulnhub项目:Web Machine(N7)
靶机地址:Web Machine(N7)渗透过程:kali ip:192.168.56.104,靶机ip,使用arp-scan进行查看靶机地址:192.168.56.128收集靶机开放端口:nmap -sS -sV -T5 -A 192.168.56.128开放了80端口࿰…...
Qt基础之三十三:海量网络数据实时显示
开发中我们可能会遇到接收的网络数据来不及显示的问题。最基础的做法是限制UI中加载的数据行数,这样一来可以防止内存一直涨,二来数据刷新非常快,加载再多也来不及看。此时UI能看到数据当前处理到什么阶段就行,实时性更加重要,要做数据分析的话还得查看日志文件。 这里给出…...
linux console快捷键
Ctrl C:终止当前正在运行的程序。Ctrl D:关闭当前终端会话。Ctrl Z:将当前程序放入后台运行。Ctrl L:清除当前屏幕并重新显示命令提示符。Ctrl R:在历史命令中进行逆向搜索。Ctrl A:将光标移动到行首…...
弗洛伊德龟兔赛跑算法(弗洛伊德判圈算法)
弗洛伊德( 罗伯特・弗洛伊德)判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm),是一个可以在有限状态机、迭代函数或者链表上判断是否存在环,以及判断环的起点与长度的算法。昨晚刷到一个视频&…...
nodejs篇 express(1)
文章目录前言express介绍安装RESTful接口规范express的简单使用一个最简单的服务器,仅仅只需要几行代码便可以实现。restful规范的五种接口类型请求信息req的获取响应信息res的设置中间件的使用自定义中间件解决跨域nodejs相关其它内容前言 express作为nodejs必学的…...
Java实习生------Redis常见面试题汇总(AOF持久化、RDB快照、分布式锁、缓存一致性)⭐⭐⭐
“年轻人,就要勇敢追梦”🌹 参考资料:图解redis 目录 谈谈你对AOF持久化的理解? redis的三种写回策略是什么? 谈谈你对AOF重写机制的理解?AOF重写机制的具体过程? 谈谈你对RDB快照的理解&a…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
