ImageNet数据集和CIFAR-10数据集
一、为什么需要大量数据集
人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,“喂入”神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献。下面介绍关于图像方面的经典数据集。
二、ImageNet数据集
ImageNet:全称为 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)。它由斯坦福大学的李飞飞教授团队创建,并且在计算机视觉领域具有重要影响力。
ImageNet官网:www.image-net.org
数据集规模:
ImageNet 数据集包含超过 1400 万张标注好的图像。
类别:
ImageNet 数据集包含 22,000 个类别的图像。
ILSVRC 竞赛的子集包含 1,000 个类别,用于图像分类挑战。
图像大小:
图像大小各不相同,但通常会被预处理为标准大小(例如 224x224 像素)以输入到神经网络中。
应用领域:
ImageNet 被广泛用于训练和评估图像分类、物体检测和图像分割等计算机视觉任务中的深度学习模型。
三、CIFAR-10数据集
CIFAR-10:全称是 Canadian Institute For Advanced Research 10。该数据集由多伦多大学的 Geoffrey Hinton 和 Alex Krizhevsky 等人创建,是一个经典的机器学习和计算机视觉任务的数据集。
Geoffrey Hinton:深度学习大牛,图灵奖获得者。
CIFAR是加拿大高级研究院(Canadian Institute For Advanced Research)的缩写
CIFAR-10官网:https://www.cs.toronto.edu/~kriz/cifar.html
CIFAR-10数据集由10个类别的60000张32x32彩色图像组成,每个类别有6000张图像。有50000个训练图像和10000个测试图像。
四、CIFAR-100数据集
CIFAR-100是比CIFAR-10类别更多的数据集,这个数据集就像CIFAR-10一样,除了它有100个类,每个类包含600个图像。每类有500个训练图像和100个测试图像。CIFAR-100中的100个类被分为20个Superclass。每个图像都有一个“精细”标签(它所属的类)和一个“粗略”标签(其所属的Superclass)。
相关文章:

ImageNet数据集和CIFAR-10数据集
一、为什么需要大量数据集 人工智能其实就是大数据的时代,无论是目标检测、图像分类、还是现在植入我们生活的推荐系统,“喂入”神经网络的数据越多,则识别效果越好、分类越准确。因此开源大型数据集的研究团队为人工智能的发展做了大量贡献…...

Go语言编程大全,web微服务数据库十大专题精讲
本课程主要从数据结构、Go Module 依赖管理、IO编程、数据库编程、消息队列、加密技术与网络安全、爬虫与反爬虫、web开发、微服务通用技术、Kitex框架等方面讲解~ 链接:https://pan.quark.cn/s/d65337a0e60d...

【LabVIEW学习篇 - 13】:队列
文章目录 队列 队列 队列通常情况下是一种先入先出(FIFO:First in First out)的数据结构,常用作数据缓存,通过队列结构可以保证数据有序的传递,避免竞争和冲突。 案例:利用队列,模…...
大语言模型综述泛读之Large Language Models: A Survey
摘要 这篇文章主要回顾了一些最突出的LLMs(GPT, LLaMA, PaLM)并讨论了它们的特点、贡献和局限性,就如何构建增强LLMs做了一个技术概述,然后调研了为LLM训练、微调和评估而准备的N多种流行数据集,审查了使用的LLM评价指标,在一组有代表性的基准上比较了几个流行的LLMs;最…...
奇偶函数的性质及运算
目录 定义 注意 特征 运算 拓展 定义 设函数f(x)的定义域D; 如果对于函数定义域D内的任意一个x,都有f(-x)-f(x),那么函数f(x)就叫做奇函数。如果对于函数定义域D内的任意一个x…...

代码随想录 day 32 动态规划
第九章 动态规划part01 今天正式开始动态规划! 理论基础 无论大家之前对动态规划学到什么程度,一定要先看 我讲的 动态规划理论基础。 如果没做过动态规划的题目,看我讲的理论基础,会有感觉 是不是简单题想复杂了? …...
支持目标检测的框架有哪些
目标检测是计算机视觉领域的一个重要任务,许多深度学习框架都提供了对目标检测的支持。以下是一些广泛使用的支持目标检测的深度学习框架: 1. TensorFlow TensorFlow 是一个广泛使用的开源深度学习框架,由Google开发。它提供了TensorFlow O…...

原神自定义倒计时
<!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><title>原神倒计时</title><style>* {margin: 0;padding: 0;box-sizing: border-box;user-select: none;body {background: #0b1b2c;}}header {…...

top命令实时监测Linux进程
top命令可以动态实时显示Linux进程信息,方便观察频繁换进换出的内存的进程变化。 top命令执行示例如下: 其中,第一行表示系统当前时间、系统的运行时间、登录的用户数目、系统的平均负载(最近1分钟,最近5分钟ÿ…...

Rust 所有权
所有权 Rust的核心特性就是所有权所有程序在运行时都必须管理他们使用计算机内存的方式 有些语言有垃圾收集机制,在程序运行时,他们会不断地寻找不再使用的内存在其他语言中,程序员必须显式的分配和释放内存 Rust采用了第三种方式࿱…...
Python面试题:结合Python技术,如何使用PyTorch进行动态计算图构建
PyTorch 是一个流行的深度学习框架,它通过动态计算图(Dynamic Computation Graphs)来支持自动微分(Autograd)。动态计算图的特点是每次前向传播时都会构建新的计算图,这使得它非常灵活,适合处理…...

基于RHEL7的服务器批量安装
目录 一、项目要求 二、实验环境 三、生成kickstart自动化安装脚本 四、搭建dhcp服务并测试kickstart脚本 五、搭建pxe网络安装环境实现服务器自动部署 编辑 六、测试 一、项目要求 1.使用kickstart编写自动化安装脚本 2.搭建dhcp服务并测试kickstart脚本 3.搭建px…...
C. Light Switches
文章目录 C. Light Switches题意:解题思路:解题代码: C. Light Switches 原题链接 题意: 房间的灯最初均为关闭状态,安装芯片后,它会每隔k分钟改变一次房间的灯光状态,即会打开灯光k分钟&…...

LabVIEW机器人神经网络运动控制系统
LabVIEW机器人神经网络运动控制系统 介绍了如何使用LabVIEW软件和中枢模式发生器(CPG)神经网络实现对舵机驱动爬壁机器人的精准运动控制。通过结合仿生控制理念与高级程序设计,本项目旨在开发一种能自动完成复杂墙面移动任务的机器人。 项目背景 现代机器人技术中…...

Qt WebEngine播放DRM音视频
Qt WebEngine播放DRM受保护视频,前提是Qt WebEngine开启音视频编码器,能够支持网页上普通视频的播放。开启音视频编码器需要自己编译源码,这里不做介绍。 什么是DRM音视频 DRM视频是指数字版权管理(Digital Rights Management&a…...

渗透小游戏,各个关卡的渗透实例
Less-1 首先,可以看见该界面,该关卡主要是SQL注入,由于对用户的输入没有做过滤,使查询语句进入到了数据库中,查询到了本不应该查询到的数据 首先,如果想要进入内部,就要绕过,首先是用…...

SpringBoot集成阿里百炼大模型(初始demo) 原子的学习日记Day01
文章目录 概要下一章SpringBoot集成阿里百炼大模型(多轮对话) 原子的学习日记Day02 整体架构流程技术名词解释集成步骤1,选择大模型以及获取自己的api-key(前面还有一步开通服务就没有展示啦!)2,…...
高级java每日一道面试题-2024年8月06日-web篇-cookie,session,token有什么区别?
如果有遗漏,评论区告诉我进行补充 面试官: cookie,session,token有什么区别? 我回答: 在Web开发中,cookie、session和token是三种常见的用于用户身份验证和会话管理的技术。它们各自有不同的用途和优缺点,下面将详细解释: 1. Cookie 定…...
Python 图文:小白也能轻松生成精美 PDF 报告!
摘要: 还在为枯燥的数据报表发愁吗?想让你的 Python 项目报告瞬间高大上?本文将带你学习如何使用 Python 生成图文并茂的 PDF 文件,从此告别单调,让你的数据“活”起来! 一、 引言 想象一下,你正在为公司…...

AQS的ReentrantLock源码
什么是AQS(全称AbstractQueuedSynchronizer) 代表:重入锁、独占锁/共享锁、公平锁/非公平锁 是JUC包中线程阻塞、阻塞队列、唤醒、尝试获取锁的一个框架 AbstractQueuedSynchronizer是全称,是一个模板模式,一些线程…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...