当前位置: 首页 > news >正文

【C++】优先级队列(容器适配器)

欢迎来到我的Blog,点击关注哦💕

前言

string vector list 这种线性结构是最基础的存储结构,C++(STL)container很好的帮助我们数据存储的问题。

容器适配器

介绍

  • 容器适配器是C++标准模板库(STL)中的一种设计模式,它允许将一个容器的接口转换为另一个接口,从而提供不同的操作和行为。
  • 容器适配器通常用于封装现有容器,以实现特定的数据结构特性,如栈(后进先出)、队列(先进先出)和优先队列(根据优先级排序)。

应用

  • 栈(stack):栈是一种后进先出的数据结构,其操作包括入栈(push)、出栈(pop)、查看栈顶元素(top)等。栈适配器可以基于多种底层容器实现,如vectordequelist.

  • 队列(queue):队列是一种先进先出的数据结构,其操作包括入队(push)、出队(pop)、查看队首元素(front)和查看队尾元素(back)。队列适配器同样可以基于dequelist实现,以适应不同的性能需求.

  • 优先队列(priority_queue):优先队列是一种特殊的队列,它根据元素的优先级进行排序。其底层容器通常是vectordeque,并通过堆算法维护元素的优先级顺序。优先队列适配器提供了插入和删除具有最高优先级元素的操作.

双重结束队列(双端队列(deque))

特点

  • 双端操作效率:支持在两端进行快速的插入和删除操作。
  • 随机访问:可以通过索引直接访问容器中的元素。
  • 无需预先分配固定大小:与vector不同,deque不需要在创建时指定大小,它可以根据需要动态增长。
  • 内存分配策略deque不需要像vector那样一次性分配大量内存,而是分散在内存中,这有助于减少内存碎片。

存储结构

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Listvector deque对比

对比维度VectorDequeList
内存连续性
随机访问性能O(1)O(1) 但可能不如VectorO(n)
插入/删除性能非末尾O(n)两端O(1), 中间O(n)两端及中间O(1)
内存重用效率扩容时需移动元素两端添加删除不需移动不适用
内存分配模式动态数组,连续内存分段连续内存非连续内存
迭代器失效可能不会不会
支持的操作[] 访问、.at() 等[] 访问、.at() 等[] 访问、.at() 等
内存管理开销高(扩容时)中等(两端操作)
适用场景需要快速随机访问且元素数量稳定需要两端快速插入删除,随机访问需求适中频繁插入删除,不关心随机访问

栈(stack)

栈的介绍

函数说明接口说明
stack()构造空的栈
empty()检测stack是否为空
size()返回stack中元素的个数
top()返回栈顶元素的引用
push()将元素val压入stack中
pop()将stack中尾部的元素弹出

栈的模拟实现

利用容器适配器的设计原理,很容易实现

  • 将栈放mystack的命名空间,以防止和库中冲突
  • 类模板设计container可以给缺省参数,默认deque(容器适配器)
  • 在里面利用deque的接口实现
namespace mystack
{template<class T, class Container = std::deque<T>>class stack{public:void push_back(const T& x){_con.push_back(x);}void pop(){_con.pop_back();}size_t size(){return _con.size();}T& top(){return _con.back();}bool empty(){return _con.empty();}private:Container _con;};
}

队列

队列介绍

函数声明接口说明
queue()构造空的队列
empty()检测队列是否为空,是返回true,否则返回false
size()返回队列中有效元素的个数
front()返回队头元素的引用
back()返回队尾元素的引用
push()在队尾将元素val入队列
pop()将队头元素出队列

队列模拟实现

  • 将栈放myqueue的命名空间,以防止和库中冲突
  • 类模板设计container可以给缺省参数,默认deque(容器适配器)
  • 在里面利用deque的接口实现
namespace myqueue
{template<class T, class Container = std::deque<T >>class queue{public:void push(const T& x){_con.push_back(x);}void pop(){_con.pop_front();}size_t size(){return _con.size();}T& front(){return _con.front();}bool empty(){return _con.empty();}private:Container _con;};
}

优先级队列(priority_queue)

基本原理

  • 优先级队列通常在内部使用堆数据结构来维护元素的优先级。
  • 堆是一种完全二叉树,可以是最大堆或最小堆。
  • 在最大堆中,父节点的值总是大于或等于其子节点的值,而在最小堆中,父节点的值总是小于或等于其子节点的值。
  • 插入操作通过在堆的适当位置插入新元素并进行上调整(heapify-up)来维持堆的性质。
  • 删除操作则涉及到移除堆顶元素(优先级最高的元素)并进行下调整(heapify-down),以恢复堆的结构。

priority_queue介绍

函数声明接口说明
priority_queue()/priority_queue(first, last)构造一个空的优先级队列
empty( )检测优先级队列是否为空,是返回true,否则返回 false
top( )返回优先级队列中最大(最小元素),即堆顶元素
push(x)在优先级队列中插入元素x
pop()删除优先级队列中最大(最小)元素,即堆顶元素

优先级模拟实现 (可以参考)

仿函数

  • 仿函数(Functor)是C++中的一个编程概念,它指的是一个类或结构体,通过重载函数调用运算符operator(),使得这个类或结构体的对象可以像函数一样被调用。
  • 仿函数可以包含状态,因为它们是对象,可以在构造函数中初始化状态,并在operator()中使用该状态。
  • 仿函数可以作为参数传递给其他函数,包括STL算法中的函数,从而提供灵活的编程模型.

这个就是一个仿函数

//小于
template<class T>class Less{public:bool operator()(const T& a,const T& b){return a < b;}};
//大于
template<class T>class Greater{public:bool operator()(const T& x, const T& y){return x > y;}};

priority_queue两个关键

向下建堆

  • 确定起始点:从最后一个非叶子节点开始向下建堆,这个节点也被称为堆的最后一个非叶子节点。在完全二叉树中,最后一个非叶子节点的索引可以通过 (n - 1 - 1) / 2 计算得到,其中 n 是数组的长度。
  • 执行向下调整:对每个非叶子节点执行向下调整操作,确保该节点与其子节点组成的子树满足堆的性质。向下调整的过程涉及到与子节点的比较和必要时的交换,直至到达堆的顶部或直到父节点不再违反堆的性质。
  • 迭代过程:从最后一个非叶子节点开始,逐步向上调整,直到根节点。每次调整后,更新当前节点的索引,以便进行下一次调整。
  • 完成建堆:重复步骤2和步骤3,直到根节点也满足堆的性质,此时整个数组就构建成了一个堆。
void AdjustDown(size_t parent)
{compare com;//仿函数size_t child = parent * 2 + 1;//if (child+1< _con.size() && _con[child] < _con[1+child])if (child + 1 < _con.size() && com(_con[child] ,_con[1 + child]))//和上面等价{++child;}while (child <_con.size()){if (com(_con[parent], _con[child])){std::swap(_con[child], _con[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

向上建堆

  • 初始化堆大小**:设置堆的大小为数组的大小,即 n
  • 从最后一个非叶子节点开始向上调整:在完全二叉树中,最后一个非叶子节点的索引为 floor((n - 1) / 2)。从这个节点开始向上调整,确保每个节点都满足大根堆的性质。
  • 执行向上调整操作:对于每个非叶子节点,检查其与子节点的关系,并进行必要的交换,以确保父节点的值大于或等于其子节点的值。如果子节点中有一个或两个,选择较大的子节点与父节点进行比较。如果父节点的值小于子节点的值,交换它们的位置,并重新设置父节点为当前子节点,继续向上调整。
  • 重复步骤2和3:直到达到根节点,即堆的第一个元素。
void AdjustUp(int child)
{compare com;int parent = (child - 1) / 2;while (child > 0){if (com(_con[parent] , _con[child])){std::swap(_con[parent], _con[child]);child = parent;parent = (child - 1) / 2;}else{break;}}}

初始化数据

迭代器初始化

  • 模板嵌套给,迭代器初始化

  • 依次push数据,在进行堆的建立

template<class InputIterator>
void push_back(InputIterator first, InputIterator last){while (first != last){_con.push_back(*first);++first;}//向下建堆for (int i = (_con.size() - 2) / 2; i >= 0; i--){AdjustDown(i);}}

pop数据

  • 将一个个数据和最后一个数据进行交换(目的:保持当前堆的结构)
  • pop出数据,将第一个数据进行向下调整
void pop()
{swap(_con[0], _con[_con.size() - 1]);_con.pop_back();AdjustDown(0);
}

push数据

  • 将数据进行尾插入,进行向上调整
void push(const T& x)
{_con.push_back(x);AdjustUp(_con.size() - 1);
}

priority_queue operators

  • top数据,返回首个数据;
  • 其他常见操作,采取容器适配器设计模式的操作
namespace mypriority_queue
{template<class T, class container = std::vector<T>,class compare = Less<T>>class priority_queue{public:const T& top(){return _con[0];}size_t szie(){return _con.size();}bool empty(){return _con.empty();}private:container _con;};}

源码(优先级队列)

namespace mypriority_queue
{template<class T>class Less{public:bool operator()(const T& a,const T& b){return a < b;}};template<class T>class Greater{public:bool operator()(const T& x, const T& y){return x > y;}};template<class T, class container = std::vector<T>,class compare = Less<T>>class priority_queue{void AdjustDown(size_t parent){compare com;size_t child = parent * 2 + 1;//if (child+1< _con.size() && _con[child] < _con[1+child])if (child + 1 < _con.size() && com(_con[child] ,_con[1 + child])){++child;}while (child <_con.size()){if (com(_con[parent], _con[child])){std::swap(_con[child], _con[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}void AdjustUp(int child){compare com;int parent = (child - 1) / 2;while (child > 0){if (com(_con[parent] , _con[child])){std::swap(_con[parent], _con[child]);child = parent;parent = (child - 1) / 2;}else{break;}}}public:template<class InputIterator>void push_back(InputIterator first, InputIterator last){while (first != last){_con.push_back(*first);++first;}//向下建堆for (int i = (_con.size() - 2) / 2; i >= 0; i--){AdjustDown(i);}}void pop(){swap(_con[0], _con[_con.size() - 1]);_con.pop_back();AdjustDown(0);}const T& top(){return _con[0];}void push(const T& x){_con.push_back(x);AdjustUp(_con.size() - 1);}size_t szie(){return _con.size();}bool empty(){return _con.empty();}private:container _con;};}

向下建堆
for (int i = (_con.size() - 2) / 2; i >= 0; i–)
{
AdjustDown(i);
}
}

	void pop(){swap(_con[0], _con[_con.size() - 1]);_con.pop_back();AdjustDown(0);}const T& top(){return _con[0];}void push(const T& x){_con.push_back(x);AdjustUp(_con.size() - 1);}size_t szie(){return _con.size();}bool empty(){return _con.empty();}private:container _con;
};

}


相关文章:

【C++】优先级队列(容器适配器)

欢迎来到我的Blog&#xff0c;点击关注哦&#x1f495; 前言 string vector list 这种线性结构是最基础的存储结构&#xff0c;C&#xff08;STL&#xff09;container很好的帮助我们数据存储的问题。 容器适配器 介绍 容器适配器是C标准模板库&#xff08;STL&#xff09;中…...

docker代理

Dockerd 代理 sudo mkdir -p /etc/systemd/system/docker.service.d sudo touch /etc/systemd/system/docker.service.d/proxy.confproxy.conf [Service] Environment"HTTP_PROXYproxy.example.com:8080/" Environment"HTTPS_PROXYproxy.example.com:8080/&qu…...

(四)activit5.23.0修复跟踪高亮显示BUG

一、先看bug 在 &#xff08;三&#xff09;springboot2.7.6集成activit5.23.0之流程跟踪高亮显示 末尾就发现高亮显示与预期不一样&#xff0c;比如上面的任务2前面的箭头没有高亮显示。 二、分析原因 具体分析步骤省略了&#xff0c;主要是ProcessInstanceHighlightsResour…...

AsyncTask

AsyncTask简介 AsyncTask 是 Android 提供的一个轻量级的异步任务类&#xff0c;它允许在后台线程中执行耗时操作&#xff08;如网络请求、数据库操作等&#xff09;&#xff0c;并在操作完成后更新 UI。其设计初衷是为了简化后台任务的处理&#xff0c;特别是在不需要复杂并发…...

嵌入式面试知识点总结 -- FreeRTOS篇

一、堆栈溢出检测 问题&#xff1a; 问题一&#xff1a;FreeRTOS堆栈溢出检测的方法&#xff1f; 解答&#xff1a; 参看&#xff1a;FreeRTOS学习 – FreeRTOSConfig.h介绍 两种堆栈溢出检测方法&#xff1a; 方法1: 开启方法&#xff0c;configCHECK_FOR_STACK_OVERFLOW…...

【深度学习】注意力机制(Transformer)

注意力机制 1.基础概念 1.1 查询、键和值 在人类的注意力方式中&#xff0c;有自主性的与非自主性的注意力提示两种解释方式。所谓自主性注意力提示&#xff0c;就是人本身主动想要关注到的某样东西&#xff1b;非自主性提示则是基于环境中物体的突出性和易见性&#xff0c;…...

【MySQL】将一张表的某一个值赋值到另一张表中

场景 两张表可以通过某个字段关联起来&#xff0c;并且想要将其中一张表的某个值赋值到另一张表的某个字段中 实操 在MySQL中&#xff0c;要将一张表&#xff08;我们称之为Table_A&#xff09;的某个字段的值赋给另一张表&#xff08;Table_B&#xff09;的对应字段&#x…...

怎样确定局域网里面是否有MAC地址冲突

目录 MAC地址冲突的现象1. 网络连接不稳定2. 数据包丢失3. 网络性能下降4. 无法访问特定设备5. 网络诊断工具的异常结果6. 网络安全问题 确定MAC地址冲突的方法如何解决MAC地址冲突总结 MAC地址冲突 是指在同一局域网&#xff08;LAN&#xff09;中&#xff0c;两个或多个设备具…...

springboot 大学生兼职平台系统-计算机毕业设计源码05282

摘 要 在当代大学生活中&#xff0c;兼职工作已经成为了许多学生的重要组成部分。校园兼职现象的普遍性及其对大学生生活的影响不容忽视。然而&#xff0c;现有的校园兼职系统往往存在信息不对称、管理不规范等问题。因此&#xff0c;我们需要深入理解校园兼职现象&#xff0c…...

CentOS linux安装nginx

下载nginx-1.21.3.tar.gz 及 nginx-upstream-fair-master.zip 上传nginx-upstream-fair-master至/app/server/nginx/modules/解压 cd /app/server/nginx/modules unzip nginx-upstream-fair-master.zip上传nginx压缩包至**/app/server/nginx/ **&#xff08;根据自己需求而定…...

事务性邮件接口API如何集成以实现自动化?

事务性邮件接口API有哪些优势&#xff1f;邮件接口API集成方法&#xff1f; 通过集成事务性邮件接口API&#xff0c;企业可以实现邮件发送的自动化&#xff0c;提高效率&#xff0c;增强用户体验。AokSend将探讨如何集成事务性邮件接口API以实现自动化&#xff0c;并提供一些最…...

zabbix 监控软件

zabbix 监控软件 自带图形化界面&#xff0c;通过网页就可以监控所有服务器的状态 事件告警&#xff0c;邮箱通知&#xff08;噩梦&#xff09; 短信&#xff0c;电话。 zabbix是什么&#xff1f; web界面提供的分布式监控以及网络监控功能的开源的企业级软件解决方案 监…...

C语言随机数小游戏

目录 前言 一、游戏要求&#xff1a; 二、游戏实现 1.游戏界面 2.游戏主体 3.主函数 4.运行结果&#xff1a; 总结 前言 前面我们学到了C语言随机数的相关知识&#xff0c;我们今天用这个知识做一个有趣的小游戏&#xff0c;会有一点函数的知识&#xff0c;不过后面会…...

解决Ubuntu报“无法解析域名cn.archive.ubuntu.com“问题

今天在Ubuntu系统上&#xff0c;使用sudo apt update命令&#xff0c;进行更新时&#xff0c;弹出"无法解析域名 cn.archive.ubuntu.com"问题&#xff0c;如图(1)所示&#xff1a; 图(1) 弹出"无法解析域名 cn.archive.ubuntu.com" 错误 出现这种现象的原因…...

搭建pxe网络安装环境实现服务器自动部署

目录 配置 kickstart自动安装脚本 搭建dhcp服务 搭建pxe网络安装环境实现服务器自动部署 测试 配置 kickstart自动安装脚本 yum install system-config-kickstart #在rhel7做&#xff0c;rhel9要收费 system-config-kickstart #启动图形制作工具 vim …...

Go框架选战:Gin、Echo、Fiber的终极较量

Gin 优点: 高性能: 优化以处理高并发和低延迟请求。易于上手: 对于熟悉 Go 的开发者来说&#xff0c;API 设计直观&#xff0c;学习曲线低。社区支持强: 广泛使用&#xff0c;有大量第三方中间件和教程。 缺点: 相比于其他框架如 Echo&#xff0c;Gin缺乏内置的验证支持Gin…...

2024.8.08(python)

一、搭建python环境 1、检查是否安装python [rootpython ~]# yum list installed | grep python [rootpython ~]# yum list | grep python3 2、安装python3 [rootpython ~]# yum -y install python3 安装3.12可以使用源码安装 3、查看版本信息 [rootpython ~]# python3 --vers…...

RabbitMQ知识总结(基本原理+高级特性)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 基本原理 消息的可靠性投递 RabbitMQ 消息的投递路径为&#xff…...

字符串切割split

let obj {} let str "aa占比:17.48%,aa计费占比:0.00%" let arr str.split(,) // [aa占比:17.48%,aa计费占比:0.00%] arr.forEach(item > { let [key,value] item.split(:) obj[key] value }) console.log(obj) //{aa占比: 17.48%, aa计费占比: 0.00%} con…...

Python中的 `continue` 语句:掌握循环控制的艺术

Python中的 continue 语句&#xff1a;掌握循环控制的艺术 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985高校的普通…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...